

Biomolecules

- Differentiate the structures and functions of carbohydrates, lipids, proteins, and nucleic acids.
- Analyze the relationship between monomers and polymers in biological molecules.
- Evaluate the roles of dehydration synthesis and hydrolysis in the formation of biomolecules.
- Assess the elemental composition and ratios in carbohydrates, lipids, and nucleic acids.
- Evaluate the diverse functions of carbohydrates, lipids, proteins, and nucleic acids in living organisms.
- Analyze the structure and significance of phospholipids in cellular membranes.
- Assess the relationship between amino acid sequences, protein structure, and function.
- Explain the role of nucleic acids, specifically DNA and RNA, in storing and transmitting genetic information.
- Evaluate the impact of chemical reactions on compound bonds and energy changes.
- Analyze the role of enzymes as biological catalysts, including their influence on activation energy, substrate binding, and reaction rates.

— Menu

Macromolecule Characteristics

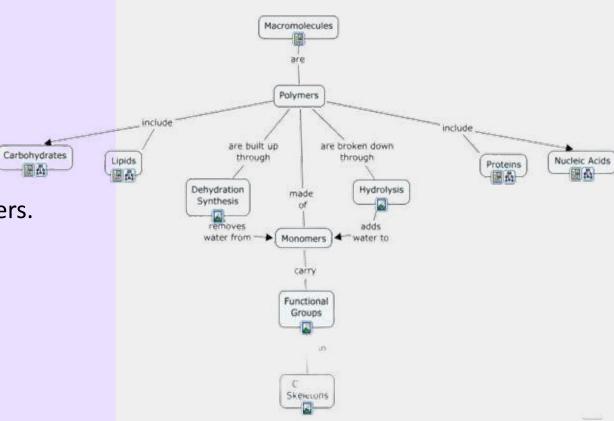
Dehydration Synthesis & Hydrolysis

Carbohydrates

Lipids

Proteins/ Enzymes

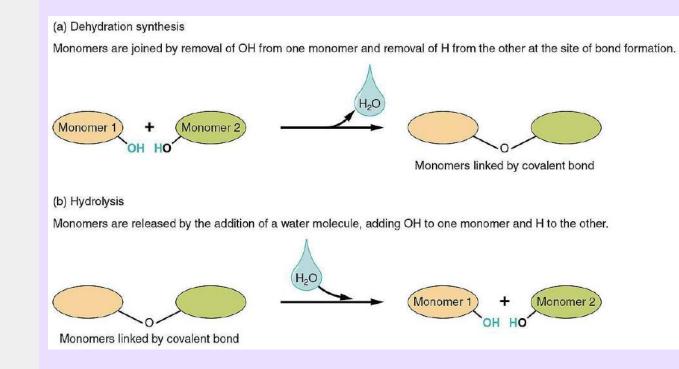
Nucleic Acids


Macromolecules / Biomolecules

Macromolecules

Characteristics -

- Large organic molecules.
- Also called <u>polymers</u>.
- Made up of smaller "building blocks" called monomers.
- Biological Macromolecules are:
 - 1. Carbohydrates
 - 2. Lipids
 - 3. Proteins
 - 4. Nucleic acids (DNA and RNA)



Dehydration Synthesis vs. Hydrolysis

Dehydration Synthesis & Hydrolysis –

- Cells connect monomers to make
 macromolecules by a process called
 condensation or <u>dehydration synthesis</u>
 (removing a molecule of water).
- Cells break down macromolecules into monomers by a process called <u>hydrolysis</u>
 (adding a molecule of water)

Carbohydrates

01

Characteristics

- Carbohydrates can range in size from small sugar molecules to large strands of sugar molecules bonded together. A biochemical test to indicate the presence of sugar –
 Benedict's solution (indicator) turns green, yellow, orange, or red when heated.
- Elements Used to Form:
 - 1. Carbon
 - 2. Hydrogen
 - 3. Oxygen

02

Monomer - Monosaccharide

1. Monosaccharide

- □ Called **Simple Sugars** (*monomer*).
- ☐ Include: Glucose, Fructose & Galactose.
- They have the same chemical formula, $C_{\varepsilon}H_{12}O_{\varepsilon}$, but have different structures.
- ☐ These three sugars are structural isomers:
 - Glucose is found in sports drinks.
 - Galactose is called "milk sugar"
 - Fructose is found in fruits.
- ☐ If the compound name ends in **ose** means it is a sugar.
- In aqueous (watery) solutions,Monosaccharides form ring structures.
- ☐ They are the main fuel that cells use for work.

03

Disaccharide

2. Disaccharide

- □ A <u>disaccharide</u> is made of two sugar molecules joined together.
- They are joined in the dehydration process.
- There is a glycosidic bond between the two sugars.

Carbohydrates Continued

3. Polysaccharide

- Complex carbohydrates
- Composed of many sugar monomers linked together.
- Polymers of monosaccharide chains.
- ☐ Three types of polysaccharides are: starch, glycogen, and cellulose.
 - Starch in *iodine* (indicator) turns dark blue or black
 - Starch is an example of a polysaccharide in plants.
 - Plant cells store starch for energy.
 - Potatoes and grains are major sources of starch in the human diet.

• Glycogen

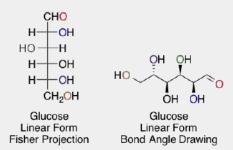
- Animals store excess sugar in the form of glycogen.
- Glycogen is similar in structure to starch because both are made of glucose monomers.

Cellulose

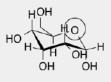
- Cellulose is the most abundant organic compound on Earth.
- It is the structural component of plants.
- It forms cable-like fibrils in the tough walls that enclose plants.
- Many animals cannot digest cellulose.
- It is also known as dietary fiber.

Chitin

- Chitin is made of glucose subunits linked together in a chain.
- Partly derived from non-sugars (nitrogen).
- Composes exoskeletons of insects, lobsters, and shrimp.
- The cell walls of fungi are also made from chitin.
- Chitin fibers are also used for dissolving sutures.



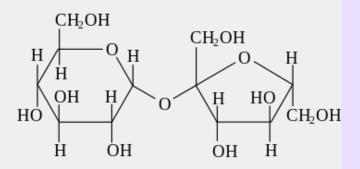
Carbohydrates


01

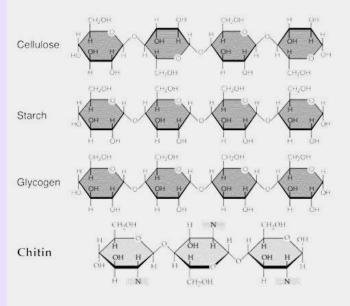
Monosaccharide

HO OH

Glucose Cyclic Form Bond Angle Drawing



Glucose Cyclic Form Chair Conformation


Glucose Cyclic Form Haworth Projection 02

Disaccharide

03

Polysaccharide

Lipids

01

Characteristics

- Lipids are hydrophobic –"water fearing".
- Do not mix with water.
- Includes fats, waxes, steroids, oils & triglycerides.
- Stores the most energy.
- Composed of: C, H, & O
- **Sudan** (indicator) can turn a variety of colors in the presence of lipids.
- Most plant oils tend to be low in saturated fatty acids & exist as liquids at room temperature (oils).

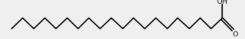
02

Functions

- Long term energy storage
- Protection against heat loss (insulation)
- Protection against water loss
- Protection against physical shock
- Chemical messengers (hormones)
- Major component of membranes (phospholipids)

03

Structure - Fatty acids


Types of Lipids

01

Saturated

1. Saturated Fatty Acid: if each Carbon is bonded by single bonds to other Carbons inside the fatty acid, the fatty acid is said to be saturated.

02

Unsaturated

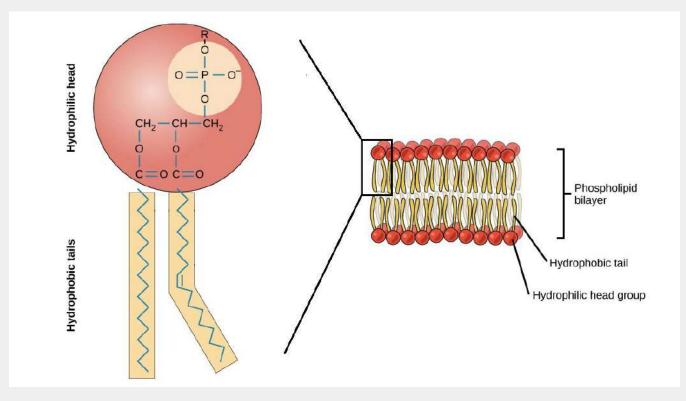
2. Mono or Unsaturated Fatty Acid:

If a double bond is present, then
it is said to be mono-saturated or
unsaturated.

03

Polysaturated

- **3.** Polyunsaturated Fatty Acid More than one double bond
 - Most animal fats have a high proportion of saturated fatty acids & exist as solids at room temperature (butter, margarine, shortening).



Lipids Continued

- 4. Phospholipids Cell membranes are made of lipids called phospholipids. Controls what enters and leaves the cell
 - Phospholipids have a head that is polar
 & attract water (hydrophilic).
 - Phospholipids also have 2 tails that are nonpolar and do not attract water (hydrophobic)
 - Steroids -
 - ☐ The carbon skeleton of steroids is bent to form 4 fused rings.
 - ☐ Cholesterol is the "base steroid" from which your body produces other steroids.

Phospholipids

Proteins

01

Characteristics

- Composed of
 - ☐ C, H, O, N, sometimes S
- Monomer
 - amino acids
 - 20 different (1 mod)
 - Most structural variation
- Polymer: Polypeptide
 - Covalent bonding links
 - Peptide Bond

02

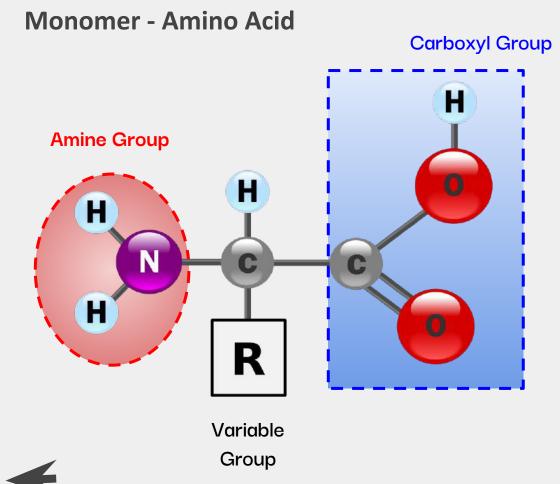
Functions

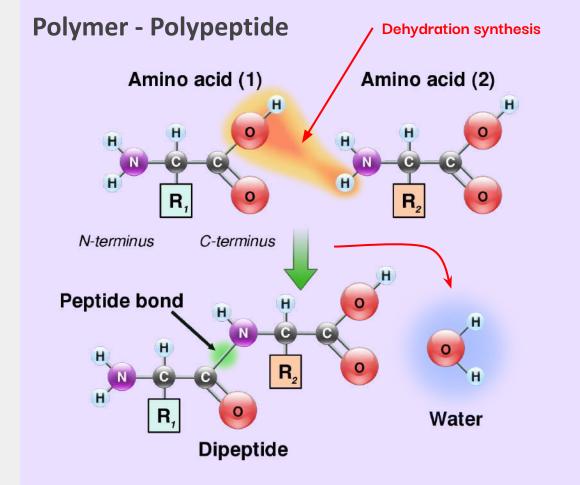
- Essential to Life *Biuret* (indicator)
 turns purple/lavender with protein, pink
 with amino acid.
- Build structure
- Movement:
 - Makes up muscle tissue
- Transport:
- ☐ Carries oxygen in an organism (hemoglobin).

03

Functions Cont'

- Immunity:
 - ☐ Helps fight off foreign invaders
 - antibodies
- Enzymes: (more below)
 - ☐ Speed up chemical reactions
 - amylase and pepsin
- Energy source
 - ☐ 1 gram = 4 kcal of energy

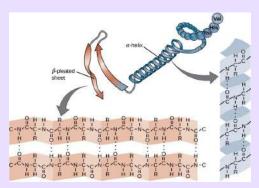




Amino Acid / Polypeptide

© Mammoth Science

Protein Structures

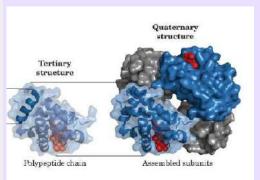

Primary Structure

The Primary
 structure is the
 specific sequence of
 amino acids in a
 protein. Called a
 polypeptide.

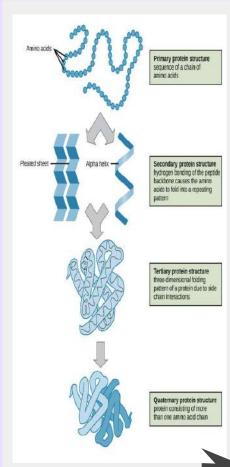
Secondary Structure

Secondary protein
 structures occur
 when protein
 chains coil(helix)
 or fold(pleated)

Tertiary Structure

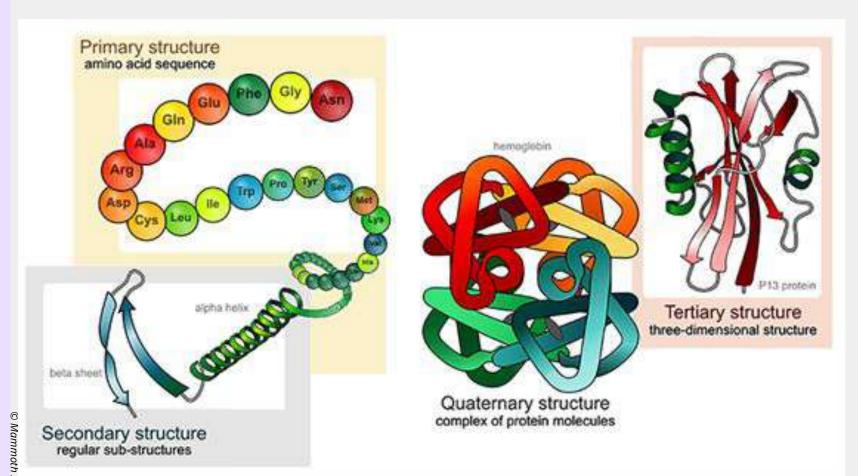

- When protein chains

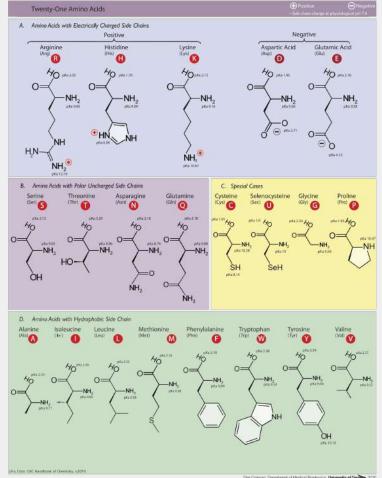
 called polypeptides join
 together, the Tertiary

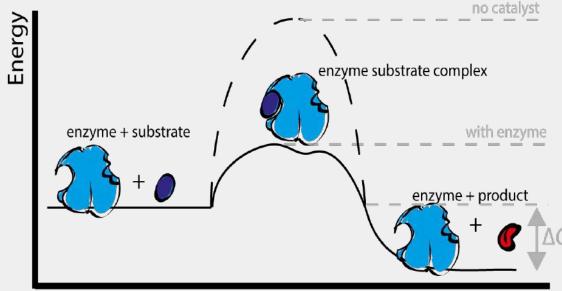

 structure forms because
 R groups interact with
 each other.
- Secondary structures
 bent and folded into a
 more complex 3-D
 arrangement of linked
 polypeptides
- Bonds: H-bonds, ionic,
 disulfide bridges (S-S)

Quaternary Structure

— QuaternaryStructure:Composed of 2 ormore "subunits".




Summary

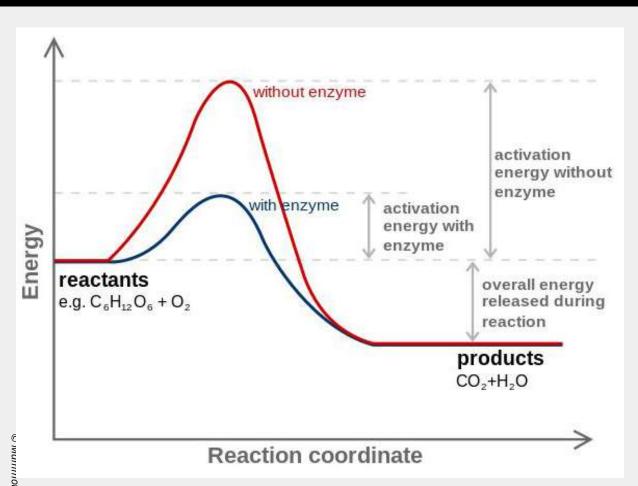


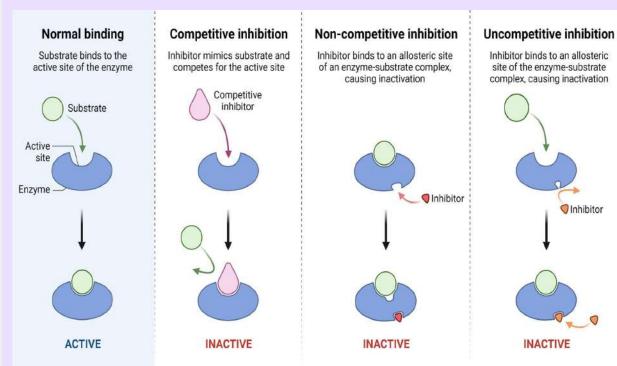
Enzymatic Activity

- Many proteins act as biological catalysts or enzymes.
 - 1. Thousands of different enzymes exist in the body.
 - 2. Enzymes control the rate of chemical reactions by weakening bonds, thus lowering the amount of activation energy needed for the reaction.
 - **3.** This is accomplished by binding to the reactants.
 - **4.** They will then twist or bend the material, lowering the energy needed to split it.
- The enzyme contains an opening called its activation (active) site.
 - 1. This site is specific for the object it will hold, called the **substrate**.
 - **2.** There are just as many enzymes as there are substrates.
 - **3.** The enzyme system is the enzyme and substrate combined.
- Most are proteins.
- They decrease the activation energy of a reaction.
- They Speed up the reaction...
- They are specific to the substrate.
 - They allow the substrate to fit into the active site like a ball in to a glove, holding it tight. (Lock and Key Model) / They can be reused NEVER DESTROYED.

Carsten Müssig eLiS UP

Reaction progress





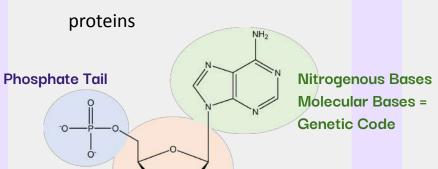
Enzymatic Activity

Enzyme Action & Inhibition

Nucleic Acids

Characteristics

- Nucleic acids are composed of long chains of nucleotides (monomer) linked by dehydration synthesis.
- Composed of the Elements: C, H, O, N & P
- Nucleotides include:
 - ☐ A phosphate group
 - ☐ A pentose sugar (5-carbon)
 - A nitrogenous bases:
 - Adenine (A)
 - Thymine (T) **DNA only**
 - Uracil (U) RNA only
 - Cytosine (C)
 - Guanine (G)


02

Functions

Functions

Nucleotide

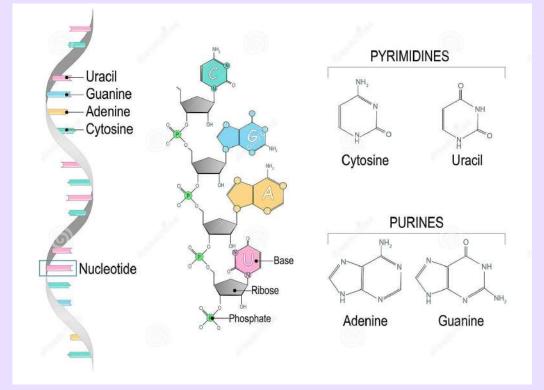
- 1. Transmits hereditary / genetic information
- 2. Leads to the formation of

Pentose Sugar

03

2 Polymers

- Two types:
 - 1. Deoxyribonucleic acid (**DNA**-double helix)
 - 2. Ribonucleic acid (RNA-single strand)


Nucleic Acid Comparison

Deoxyribonucleic Acid

Sugar-Phosphate Backbones Nucleotide CG A >> T C (G G C A >T Key: CG Adenine Thymine T Guanine T Cytosine Hydrogen Bonds **Antiparallel DNA Strands DNA Ladder Double Helix**

Ribonucleic Acid

Thank you!

Do you have any questions? instructor@email.com
Xxx-xxx-xxxx x-xxxx

