Unit 5 In Class PPT

Physics Daily Agenda- Wednesday 3/27

Schedule

- 1. Opening Phenomenon
- 2. Modeling
- 3. Consensus Circle
- 4. Need to Knows?
- 5. Flipped Lesson

Reminders

Flipped Lesson Energy due TOMORROW.

Do Now.

Find somewhere comfortable to sit.

Standards

S.2 Modeling

Unit 5 Phenomenon

What dangers can collisions cause to our bodies and brain?

Should certain types of collisions/contact be banned in the NFL and other sports?

How can we make the things around us safer that could be in collisions?

Video

1:05-1:47

DO NOT PLAY WITH SOUND

Model Independently

What do you see?

Model Independently

What do you see from the outside (observable)?

What is happening inside the brain (unobservable)?

Phenomenon Consensus Circle

Questions to Answer:

- What was your initial reactions to this video?
- What did you notice happen during this phenomenon?
- What other sports and situations could this apply to?
- What physics concepts does this already relate to from previous units?
- What physics concepts should we know about to explain this?
- What else are you curious about?

Sentence Stems:

- I agree/disagree because...
- What do you mean by that?
- Does anyone want to respond to this idea?
- What is your evidence?
- Can you give me an example?
- Why do you think that?
- Do you have anything to add?
- The next question to discuss is...

Energy Flipped Lesson- Due Tomorrow! With Notes!

Physics Daily Agenda- Thursday 3/28

Schedule	Do Now	Standards
 Flipped Lesson Check Conservation of Energy Demo Review Energy and Conservation of Energy Practice Packet Time 	Take out your flipped lesson notes	5.1 Energy Conservation I can calculate potential and kinetic energy using the conservation of energy
If you won't be here tomorrow, you need to get the work!		

Conservation of Energy

https://dptv.pbslearningmedia.org/resource/hew06.sci.phys.maf.rollercoaster/ener gy-in-a-roller-coaster-ride/

Practice Problems

Flipped Lesson Pages 1 and 2

Physics Daily Agenda- Friday 3/29

Schedule !!	<u>Do Now</u>	<u>Standards</u>
!!		I 5.1 Energy
1. Bouncing Balls	Take out a notebook	Conservation
Mini Lab		I can calculate potential
2. Roller Coaster	i	and kinetic energy using
Project Introduction		the conservation of
3. Work Time		l energy
i!		1
il		

Bouncing Balls Mini Lab

How much energy is "lost" when a ball bounces? How can we figure this out?

Bouncing Balls Mini Lab

How much energy is "lost" when a ball bounces? How can we figure this out?

Choose 3 different balls and record the initial height and new bounce height.

Determine the PE at the top, KE at the bottom and velocity at the bottom.

Determine the new PE when it bounces up. How much energy was lost?

Roller Coaster Project Introduction

Physics Daily Agenda- Monday 4/8

Physics Daily Agenda- Thursday 4/11

Schedule	<u>Do Now</u>	<u>Standards</u>
 Conservation of Energy Review Roller Coaster Project Work Time 	Take out your theme park rubric.	5.1 Energy Conservation I can calculate potential and kinetic energy using the conservation of energy
<u>Reminders</u>		
 Work and Power FL Due Monday Roller Coaster Project Due Thursday 4/18 End of Class 		

The ball is 2 kg.

Roller Coaster Mini Project

Physics Daily Agenda- Friday 4/12

Do Now

Schedule

- 1. Welcome to our Engineer Stephanie
- 2. Design Constraints
- 3. Roller Coaster Project Work Time

Reminders

- Work and Power FL Due Monday
- Roller Coaster Project Due Thursday 4/18 End of Class

Take out your theme park rubric and notebook **Standards 5.1 Energy Conservation** I can calculate potential and kinetic energy using the conservation of

energy

JOHNS HOPKINS

Roller Coaster Design Project

Goal: To create blueprints for a 2D roller coaster after interviewing a roller coaster fanatic that is your family, friend or teacher and show your knowledge of energy, work, and power.

Technical Specifications

Synopsis:

C

Added: Apr 11, 2019 8:01 pm

This is a Sources Sought Synopsis for the purpose of conducting market research and obtaining industry information only. The National Park Service will use information obtained through this synopsis to develop an acquisition strategy. Proposals are NOT being requested nor accepted at this time.

f Construction of structures and facilities	MARINE CORPS IPT		
Single Award IDIQ- Job Order Contract- Hart-Dole-Inouye Federal Center 47PF0019R0026 Z Maintenance, repair, and alteration of real property	General Services Administration Public Buildings Service (PBS) R5 Acquisition Management Division (47PF00)	Solicitation (Modified) / Total Small Business	Apr 11, 2019

Design Constraints in this project

- Schedule
- Max Height
- Ending Speed
- Loop
- Showing Your Work in an organized way
- Number of Energy Calculations

Steps to Start Your Project

- 1. Choose a starting height
- 2. Create an initial design with heights, radius of loop and mass of the car chosen
- 3. Determine your 6 points to calculate energy
- 4. Determine your PE at the start of ride
- 5. Determine your PE, KE and velocity at each point

Project Goals Friday and Monday

- Create your rough draft of your coaster with design and heights
- Calculate all KE, PE, velocities for ride
- Add work and power on Monday
- Show your teacher your rough draft

Physics Daily Agenda- Monday 4/15

Scheudle

Do Now

- Review Work and Power
- 2. Project- Motor, Ending Speed
- 3. Roller Coaster Work Time

Reminders

Roller Coaster
 Project Due
 Thursday 4/18 End
 of Class

Take out your flipped lesson notes and roller coaster project

5.1 Energy Conservation I can calculate potential and kinetic energy using the conservation of energy

Standards

5.2 Work and Power I can use forces and motion concepts to determine the work and power on a system.

Work and Power

The Dragster is 130 m tall and the average car has a mass of 13607.8 kg (15 tons!). What is the potential energy at the top?

How much **work** does the coaster have to do to get to the top?

If it takes 10 seconds to reach the top, how much power is needed?

Motor Requirement and Ending Speed

- Calculate work to reach the top
- Choose a reasonable time to reach the top and find power

Ending Speed:

- Starting Speed & Ending Speed
- Choose distance and find acceleration OR
- Choose acceleration and find distance

The Kinematic Equations

d = $v_i^* t + \frac{1}{2} * a^* t^2$ $v_f^2 = v_i^2 + 2*a^* d$

$$\mathbf{v}_{\mathbf{f}} = \mathbf{v}_{\mathbf{i}} + \mathbf{a}^{*}\mathbf{t}$$
 $\mathbf{d} = \frac{\mathbf{v}_{\mathbf{i}} + \mathbf{v}_{\mathbf{f}}}{2} + \mathbf{t}$

Roller Coaster Project Steps

- 1. Choose a starting height
- 2. Create an initial design with heights, radius of loop and mass of the car chosen
- 3. Determine your 6 points to calculate energy
- 4. Determine your PE at the start of ride
- 5. Determine your PE, KE and velocity at each point
- 6. Determine the acceleration to end ride
- 7. Determine work and power
- 8. Show teacher rough draft (by Tuesday)

Physics Daily Agenda- Tuesday 4/16

Do Now

Schedule

- 1. Review Project Requirements
- 2. Work Time- show teacher rough draft by the end of class

Reminders

 Roller Coaster Project Due Thursday 4/18 End of Class Take out your roller coaster project.

Standards

5.1 Energy Conservation I can calculate potential and kinetic energy using the conservation of energy

5.2 Work and Power I can use forces and motion concepts to determine the work and power on a system.
Pendulum Energy

A :	KE = 0 J PE = 2.4 J	
В:	KE = 2.0 J PE =	J
C:	KE = PE = 0 J	_J
D:	KE = PE =	_J J

Motor Requirement and Ending Speed

- Calculate work to reach the top
- Choose a reasonable time to reach the top and find power

Ending Speed:

- Starting Speed & Ending Speed
- Choose distance and find acceleration OR
- Choose acceleration and find distance

The Kinematic Equations

d = $v_i^* t + \frac{1}{2} * a^* t^2$ $v_f^2 = v_i^2 + 2* a^* d$

$$\mathbf{v}_{\mathbf{f}} = \mathbf{v}_{\mathbf{i}} + \mathbf{a}^{*}\mathbf{t}$$
 $\mathbf{d} = \frac{\mathbf{v}_{\mathbf{i}} + \mathbf{v}_{\mathbf{f}}}{2} + \mathbf{t}$

Roller Coaster Project Steps

- 1. Choose a starting height
- 2. Create an initial design with heights, radius of loop and mass of the car chosen
- 3. Determine your 6 points to calculate energy
- 4. Determine your PE at the start of ride
- 5. Determine your PE, KE and velocity at each point
- 6. Determine the acceleration to end ride
- 7. Determine work and power
- 8. Show teacher rough draft (by Tuesday)
- 9. Get larger white paper (in prep room) and begin final draft. Make sure you have **all** requirements!

Physics Daily Agenda- Wednesday 4/17

	<u>Schedule</u>	<u>Do Now</u>	<u>Standards</u>
1.	Work Time FINAL DRAFT	Take out your roller coaster project.	5.1 Energy Conservation I can calculate potential and kinetic energy using the conservation of
	Reminders		energy
•	Roller Coaster Project Due Thursday 4/18 End of Class		5.2 Work and Power I can use forces and motion concepts to determine the work and power on a system.

Roller Coaster Project Steps

- 1. Choose a starting height
- 2. Create an initial design with heights, radius of loop and mass of the car chosen
- 3. Determine your 6 points to calculate energy
- 4. Determine your PE at the start of ride
- 5. Determine your PE, KE and velocity at each point
- 6. Determine the acceleration to end ride
- 7. Determine work and power
- 8. Show teacher rough draft (by Tuesday)
- 9. Get larger white paper (in prep room) and begin final draft. Make sure you have **all** requirements!

Physics Daily Agenda- Thursday 4/18

	<u>Schedule</u>	<u>Do Now</u>	<u>Standards</u>
1.	Work Time FINAL DRAFT Due Today!	Take out your roller	5.1 Energy Conservation I can calculate potential
	Reminders	coaster project.	the conservation of energy
•	Roller Coaster Project Due TODAY 4/18 End of Class		5.2 Work and Power I can use forces and motion concepts to determine the work and
•	Flipped Lessons Collisions and Impulse due Tuesday!		power on a system.

Physics Daily Agenda- Monday 4/18

Do Now

Schedule

- 1. Teacher Appreciation
- 2. Collisions Mini Lab
- 3. Flipped Lesson Time

Reminders

 Flipped Lesson Collisions due Tuesday!

Take out your notebook and something to write with.

Standards

5.1 Energy Conservation
I can calculate potential and kinetic energy using the conservation of energy
5.2 Work and Power

- I can use forces and motion concepts to determine the work and
- power on a system.

Turn in Roller Coaster Project!

- Hour 1: Jeff, Emily, Christian S, Chris W, Emma
- Hour 5: Maya, Diane, Peter, Octavia, Sam
- Hour 6: Robert-Michael, George, Bayron, Ceirra, Brandon, Alize, Jaycee

Collisions

Mini Lab

For each collisions, model and write down what is happening in the collision.

We will categorize at the end.

The mass of the big fish is 4X the mass of the little fish. Speed of Big Fish = 5 km/hr

Physics Daily Agenda- Tuesday 4/23

Do Now

Sc	hed	u	le

- Review types of collisions
- 2. Review impulse
- 3. Practice Time

Reminders

• Complete pages 3 and 4 in Practice Packet Take out your flipped lessons notes and practice packet. Sit with your partner from yesterday. **Standards**

5.3 Collisions

5.4 Impulse

Momentum and Impulse Equations

$$p = mv$$

p = momentumm = massv = velocity

Inelastic (#1 Part 2) vs. Elastic (#4 Part 2) vs. Explosions (#1 Part 3)

Part 4 #1

$$Impulse = F_{average} \Delta t = m \Delta v$$

Reduce average impact force

inge he constant.

Let's look at different situations!

Problems- how to successfully complete?

- Draw the situation- before and after
- Type of collision
- Variables for mass and velocity
- What are you looking for?
- Write down equation
- Solve!

Work on Pages 3 and 4 in your Practice Packet!

Video

1:05-1:47

DO NOT PLAY WITH SOUND

Welcome Katerina and Jon!

Physics Daily Agenda- Tuesday 4/30

<u>Schedule</u>	<u>Do Now</u>	<u>Standards</u>
1. Turn in Concussion CER (10 min)	Take out your	5.1 Conservation of Energy
2. End of Unit Assessment	concussion watching	5.2 Work and Power
Reminders	guide.	5.3 Collisions
Wednesday we are introducing your unit assessment project.		5.4 Impulse

End of Unit Assessment

Choose 1

Phenomenon Assessment #1

- Create model with before, middle and after
- Must have labels and relevant vocabulary to unit (energy, work/power, momentum, collisions, impulse)
- Description on back to match model

Phenomenon Assessment #2

- Create model with before, middle and after
- Must have labels and relevant vocabulary to unit (energy, work/power, momentum, collisions, impulse)
- Description on back to match model

Phenomenon Assessment #3

- Create model with before, middle and after
- Must have labels and relevant vocabulary to unit (energy, work/power, momentum, collisions, impulse)
- Description on back to match model

Physics Daily Agenda- Wednesday 5/1

Do Now

Cabadul	_
Schedule	2

1. Go over Project

- 2. Get partner/work by yourself
- 3. Brainstorm
- 4. Brainstorm #2
- 5. Absent yesterday? makeup models

Take out a notebook and something to write with.

Standards

5.1 Conservation of Energy

5.2 Work and Power

5.3 Collisions

5.4 Impulse

First Prime Air Delivery

December 7, 2016 Fully Autonomous — No Human Pilot 13 Minutes — Click to Delivery

Project Overview

Hour 1 Groups

- 1. Becky, Kennedi
- 2. Jenna, Hannah
- 3. Allie
- 4. Emma
- 5. Paige, Nikita
- 6. Isaac, Aaron
- 7. Sage, Ryan
- 8. Abby
- 9. Aditya, Alex
- 10. August, Chris B
- 11. Mackenzie
- 12. Michael, Chris W
- 13. Robert, Shane
- 14. Jeff, Christian S
- 15. Emily
- 16. Ramiyah
- 17. Jon
- 18. Sierra

Hour 5 Groups

- 1. Seth
- 2. Nick, Drew
- 3. Max, Dylan
- 4. Amanda, Isabelle
- 5. EJ, Diane
- 6. Miranda, Michale
- 7. Vlada, Maya
- 8. Krystal, Bella
- 9. Jillian
- 10. Sam, Maurice
- 11. Octavia
- 12. Quianna
- 13. Peter
- 14. Desiree
- 15. Juni
Hour 6 Groups

- 1. Cierra, Cheyanne
- 2. Tila, Luis
- 3. Diana, Audrey
- 4. Jack, George
- 5. Mary, Joey
- 6. Nicole
- 7. Logan, Alize
- 8. Jasen, Leo
- 9. Njeri
- 10. Alan, Bayron
- 11. Zain, Jason
- 12. Donovan
- 13. Robert-Michael
- 14. Jayden
- 15. Brandon, Jaycee

Due Friday beginning of class- Budget sheet with design

Physics Daily Agenda- Thursday 5/2

	<u>Schedule</u>	<u>Do Now</u>	<u>Standards</u>
1.	Continue/finish brainstorming	Take out your project	5.1 Conservation of Energy
2.	Finish proposal sheet	outline and budget	5.2 Work and Power
3.	Final proposal due tomorrow.	sheet.	5.3 Collisions
	i		l 5.4 Impulse

Physics Daily Agenda- Friday 5/3

<u>Schedule</u>	<u>Do Now</u>	<u>Standards</u>
 Get drawer Buy materials Begin building/planning 	Take out your project outline and budget sheet.	 5.1 Conservation of Energy 5.2 Work and Power 5.3 Collisions 5.4 Impulse