(3)

(3)

(3)

#### Show all work leading up to all responses. You may attach additional pages if needed.

(2)

(2)

(5)

- 1. Identify and explain the isomeric relationship between the following pairs of compounds.
- (3)(a) 2,2-Dimethylpentane and 2-Methylhexane

 $CH_2CH_2CH_3$  $CH_3$  — CH —  $CH_2CH_2CH_2CH_3$ 

- $CH_2CH_2CH_3$  $CH_2CH_2CH_3$ (c)  $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3C$   $H_3$   $H_3$ (2)
  - $CH_2CH_2CH_3^{(5)}$  $CH_2CH_2CH_3$ (d)  $H_3C$   $\longrightarrow$  C  $\longrightarrow$   $CH_2CH_3$   $H_3C$   $\longrightarrow$  C  $\longrightarrow$   $CH_2CH_3$
- 2. Represent ethane using the following kinds of dia- (5) grams:
- (2)(a) Lewis-Dot Diagram
- (2)(b) Line-bond Diagram
- (3)(c) Condensed structural formula

3. Consider the following structural formula:  $CH_2CH_3$ 

 $CH_3$  — C —  $CH_2$  —  $CH_2F$ 

- (a) Identify the parent alkane.
- (b) Identify all functional groups in the compound.
- (c) Write the IUPAC name of the compound.

- 4. Consider 3-ethyl-2-methylhexane:
  - (a) Identify the parent alkane.
  - (b) Identify all functional groups in the compound.
  - (c) Draw the chemical structure of the compound.

- 5. Consider the bond between the 2nd and 3rd carbon of butane.
  - (a) Draw the Newman projections for all possible conformations. Label them with letters such as A, B, C, etc.

(1)

- (3) (b) Which conformers are eclipsed? Which are (3) staggered?
- (c) Use the Cahn-Ingold-Prelog Rules to determine the configuration of each steroisomer (R or S).
- (4) (c) Draw a rough potential energy diagram for rotating around the bond.
- (d) Compare and constrast the stereoisomers physical properties.
- (1) (e) Compare and constrast the stereoisomers chemical activity.
- (3) (d) Explain your reasons for identifying the highest and lowest energy conformers.
  - 7. Draw a reaction energy diagram for a two-step reaction with  $K_{\text{eq}} > 1$ .

    (5) (a) Label the parts of the diagram corresponding
    - (a) Label the parts of the diagram corresponding tor reactants, products, transition state,  $\Delta G^{\circ}$ , and  $\Delta G^{\ddagger}$ .

(2) (b) Is  $\Delta G^{\circ}$  positive or negative?

Alanine

(2) (a) Draw a 3D line-bond diagrams of both stereoisomers.

(2) (b) Draw Fisher projections of each steroisomer.

- 8. Draw a reaction energy diagram for a two-step reaction with  $K_{\rm eq} > 1$ , whose second step is faster than the first step of the reaction. (5) 11. Explain the lack of side reactions for the following reaction:

  CH<sub>2</sub>CH<sub>3</sub>

  CH<sub>2</sub>CH<sub>3</sub>
- (5) (a) Label the parts of the diagram corresponding tor reactants, products, transition state,  $\Delta G^{\circ}$ , and  $\Delta G^{\ddagger}$ .

| $_{\mathrm{CH_{2}CH_{3}}}^{\mathrm{reaction:}}$                                              | $\mathrm{CH_{2}CH_{3}}$                                   |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $CH_3 \longrightarrow CH \longrightarrow HCH_2H + Br_2 \longrightarrow CH_3 \longrightarrow$ | $-\operatorname{CBr} \longrightarrow \operatorname{CH}_3$ |
|                                                                                              |                                                           |
|                                                                                              |                                                           |
|                                                                                              |                                                           |
|                                                                                              |                                                           |
|                                                                                              |                                                           |

- (2) (b) Is  $\Delta G^{\circ}$  positive or negative?
- (2) (c) Why is the second step as you have drawn it faster than the first step?
- (8) 9. Predict the products of the following reaction and balance the resulting equation:  $C_3H_8+O_2 \longrightarrow$
- (10) 10. Predict the products and draw the mechanism for the following reaction:  $CH_3CH_3 + Cl_2 \longrightarrow$

# Assigning Abs. Config. to Wedge/Dashed 3D Structures

- 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.
- 2. Orient the chiral centre such that the #4 priority substituent is pointing away from the viewer.
- 3. Trace the path of priorities #1, #2 and #3. (For this part you ignore #4).
- 4. If the path traced from 1-2-3 is clockwise, the chiral center is assigned (R) (from Latin, rectus)
- 5. If the path traced is counter clockwise, the chiral center is assigned (S) (from the Latin sinister)

#### Assigning Abs. Cong. to Fischer Proj.

- 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.
- 2. Perform the two allowed manipulations of the Fischer projection to place the lowest priority group on one of the vertical positions (either top or bottom).
- 3. If the priorities of the other three groups (1-2-3) proceed clockwise, the stereogenic center is assigned as R. If the priorities of the other three groups (1-2-3) proceed counter clockwise, the stereogenic center is assigned as S.

Points earned: \_\_\_\_\_ out of a possible 32 points

<sup>&</sup>lt;sup>1</sup>If two adjacent atoms are tied then you go to the next atom away from the center until the tie is broken.

#### Show all work leading up to all responses. You may attach additional pages if needed.

(2)

(5)

- 1. Identify and explain the isomeric relationship between the following pairs of compounds.
- (3)(a) 2,3-Dimethylbutane and 2-Methylpentane

(2)

 $CH_2CH_3$ (b)  $CH_3 \longrightarrow CH_2 CH_3$ (3) $CH_3 \longrightarrow CH \longrightarrow CH_2CH_2CH_2CH_3$  (5)

3. Consider the following structural formula:  $CH_3$ 

 $CH_3$  —  $\dot{C}$  —  $CH_2$  —  $CH_2OH$ 

- (a) Identify the parent alkane.
- (b) Identify all functional groups in the compound.
- (c) Write the IUPAC name of the compound.

 $CH_2CH_2CH_3$   $CH_2CH_2CH_3$ (3)(c)  $H_3CH_{10} C - CH_2CH_3 Cl - CH_2CH_3$ В (2)

- 4. Consider 2-methyl-4-propylhexane:
  - (a) Identify the parent alkane.
  - (b) Identify all functional groups in the compound.

 $\mathrm{CH_{2}CH_{2}CH_{3}}$  $CH_2CH_2CH_3(5)$ (3)(d)  $HO \coprod C \longrightarrow CH_2CH_3 OH \longrightarrow C \longrightarrow CH_2CH_3$ ŌΗ A В

(c) Draw the chemical structure of the compound.

- 2. Represent 2-methylbutane using the following kinds of diagrams:
- (2)(a) Lewis-Dot Diagram

- 5. Consider the bond between the 2nd and 3rd carbon of 2-methylbutane.
  - (a) Draw the Newman projections for all possible conformations. Label them with letters such as A, B, C, etc.

- (2)(b) Line-bond Diagram
- (3)(c) Condensed structural formula

(1)

- (3) (b) Which conformers are eclipsed? Which are (2) staggered?
- (b) Draw Fisher projections of each steroisomer.

- (4) (c) Draw a rough potential energy diagram for rotating around the bond.
- (3) (c) Use the Cahn-Ingold-Prelog Rules to determine the configuration of each steroisomer (R or S).

(3) (d) Explain your reasons for identifying the highest and lowest energy conformers.

| (d) | Compare    | and   | constrast | the | stereoisomers |
|-----|------------|-------|-----------|-----|---------------|
|     | physical p | roper | rties.    |     |               |

- (e) Compare and constrast the stereoisomers chemical activity.

6. Consider the following  $\begin{array}{c} \mathrm{NH_2} \\ \\ \\ \mathrm{CH_3} \longrightarrow \mathrm{CH} \longrightarrow \mathrm{Br} \end{array}$ 

(2)

(a) Draw a 3D line-bond diagrams of both stereoisomers.

- 7. Draw a reaction energy diagram for a reaction with (10) 10. Predict the products and draw the mechanism for  $K_{eq} = 1.$ 
  - the following reaction:  $CH_3CH_3 + Cl_2 \longrightarrow$
- (5)(a) Label the parts of the diagram corresponding tor reactants, products, transition state, $\Delta G^{\circ}$ , and  $\Delta G^{\dagger}$ .
- (b) Is  $\Delta G^{\bullet}$  positive or negative? (2)

- (5) 11. What side reactions would exist for the following and why:  $CH_3$  — CH —  $HCH_2H$  +  $Cl_2$  —  $CH_3$  — CCl —  $HCH_2H$
- 8. Draw a reaction energy diagram for a one-step reaction with  $K_{eq} < 1$ .
- (5)(a) Label the parts of the diagram corresponding tor reactants, products, transition state, $\Delta G^{\circ}$ , and  $\Delta G^{\sharp}$ .
- (b) Is  $\Delta G^{\bullet}$  positive or negative? (2)

(10) 9. Predict the products of the following reaction and balance the resulting equation:  $CH_3CH_2CH_2CH_3 + O_2 \longrightarrow$ 

- Assigning Abs. Config. to Wedge/Dashed 3D Structures
  - 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.1
  - 2. Orient the chiral centre such that the #4 priority substituent is pointing away from the viewer.
  - 3. Trace the path of priorities #1, #2 and #3. (For this part you ignore #4).
  - 4. If the path traced from 1-2-3 is clockwise, the chiral center is assigned (R) (from Latin, rectus)
  - 5. If the path traced is counter clockwise, the chiral center is assigned (S) (from the Latin sinister)

Points earned: \_\_\_\_\_ out of a possible 39 points

<sup>&</sup>lt;sup>1</sup>If two adjacent atoms are tied then you go to the next atom away from the center until the tie is broken.

#### Assigning Abs. Cong. to Fischer Proj.

- 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.
- 2. Perform the two allowed manipulations of the Fischer projection to place the lowest priority
- group on one of the vertical positions (either top or bottom).
- 3. If the priorities of the other three groups (1-2-3) proceed clockwise, the stereogenic center is assigned as R. If the priorities of the other three groups (1-2-3) proceed counter clockwise, the stereogenic center is assigned as S.

#### Show all work leading up to all responses. You may attach additional pages if needed.

(3)

(3)

(5)

- 1. Identify and explain the isomeric relationship between the following pairs of compounds.
- (3)(a) 2,2-Dibromopentane and 2,3-Dibromopentane
- $CH_2CH_2Cl$ (b)  $CH_3 \longrightarrow CH \longrightarrow CH_2CH_3$   $CH_3$ (3) $CH_3$  — CH —  $CH_2CH_2CH_2CI$
- ClCl— CH<sub>2</sub>CH<sub>3</sub> H ■ C — E CH<sub>3</sub> (3)(3)
  - $CH_2CH_2CH_3$  (5)  $CH_2CH_2CH_3$ (d) Br  $\stackrel{\circ}{\text{L}}$   $\stackrel{\circ}{\text{CH}_3}$   $\stackrel{\circ}{\text{CH}_3}$   $\stackrel{\circ}{\text{L}}$   $\stackrel{\circ}{\text{CH}_3}$   $\stackrel{\circ}{\text{Br}}$ В
  - 2. Represent bromomethane using the following kinds (5) of diagrams:
- (a) Lewis-Dot Diagram (3)

(3)

- (3)(b) Line-bond Diagram
- (3)(c) Condensed structural formula

3. Consider the following structural formula:  $CH_2CH_3$ 

 $CH_3$  —  $CH_2$  —  $CH_2$  —  $CH_2$  Cl

- (a) Identify the parent alkane.
- (b) Identify all functional groups in the compound.
- (c) Write the IUPAC name of the compound.

- 4. Consider 2-bromo-4-ethylhexane:
  - (a) Identify the parent alkane.
  - (b) Identify all functional groups in the compound.
  - (c) Draw the chemical structure of the compound.

- 5. Consider the bond between the 2nd and 3rd carbon of 2-chlorobutane.  $CH_3 - CH_2 - CHCl - CH_3$ 
  - (a) Draw the Newman projections for all possible conformations. Label them with letters such as A, B, C, etc.

(1)

(5)

(2)

(2)

- (3)(b) Which conformers are eclipsed? Which are (3) staggered?
- (c) Use the Cahn-Ingold-Prelog Rules to determine the configuration of each steroisomer (R or S).
- (4)(c) Draw a rough potential energy diagram for rotating around the bond.
- (d) Compare and constrast the stereoisomers physical properties.
- (1)(e) Compare and constrast the stereoisomers chemical activity.
- (3)(d) Explain your reasons for identifying the highest and lowest energy conformers.

7. Draw a reaction energy diagram for a two-step reaction with  $K_{\rm eq} > 1$ , whose second step is faster than the first step of the reaction.

(a) Label the parts of the diagram corresponding tor reactants, products, transition state,  $\Delta G^{\circ}$ , and  $\Delta G^{\dagger}$ .

|                           | $\mathrm{NH}_2$             |
|---------------------------|-----------------------------|
|                           |                             |
|                           |                             |
| 6. HO — CH <sub>2</sub> — | $-CH \longrightarrow CO_2H$ |

Serine

(2)

(b) Is  $\Delta G^{\circ}$  positive or negative?

- (a) Draw a 3D line-bond diagrams of both stereoisomers.
- (c) Why is the second step as you have drawn it faster than the first step?

(2)(b) Draw Fisher projections of each steroisomer. (8) 8. Predict the products of the following reaction and (6) 10. Explain the lack of side reactions for the following balance the resulting equation:

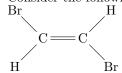
 $CH_4 + O_2 \longrightarrow$ 

 $\mathrm{CH}_3$ 

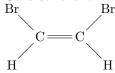
 $CH_3 \longrightarrow CH \longrightarrow CH_3 + Br_2 \longrightarrow CH_3 \longrightarrow CBr \longrightarrow CH_3$ 

(10) 9. Predict the products and draw the mechanism for the following reaction:

 $CH_3CH_3 + Br_2 \longrightarrow$ 


Show all work leading up to all responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

- (8) 1. Draw the mechanism for the following reaction: CH<sub>3</sub>CH=CH<sub>2</sub> + HCl  $\longrightarrow$  CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Cl
- (8) 5. Predict the products for the following reaction: CH<sub>2</sub>CH<sub>2</sub>

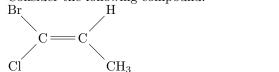

$$\operatorname{CH_2CH_3}$$
 $\downarrow$ 
 $\operatorname{CH_3} \longrightarrow \operatorname{CH_2} \longrightarrow \operatorname{C} \cong \operatorname{CCH_3} + 2\operatorname{HBr}$ 

(8) 6. Predict the products for the following reaction:

- (8) 7. Predict the products for the following reaction: CH3CCl<sub>2</sub>CH<sub>2</sub>CH3  $\xrightarrow{2KOH}$
- (8) 2. Draw the mechanism for the following reaction:  $CH_3CH_2CH_2OH + H_3O^+ \longrightarrow CH_3CH=CH_2$
- 8. Consider the following compound:



- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (6) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (8) 3. Predict the products for the following reaction: CH<sub>3</sub>CH=CHCH<sub>3</sub> + H<sub>3</sub>O<sup>+</sup>  $\longrightarrow$
- 9. Consider the following compound:




- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (8) 4. Predict the products for the following reaction:  $\begin{array}{c} \operatorname{CH}_3 \\ & \downarrow \\ \operatorname{CH}_3 \longrightarrow \operatorname{C} \longrightarrow \operatorname{CH} = \longrightarrow \operatorname{CH}_2 + \operatorname{HBr} \end{array}$
- (6) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?

(1)

(3)

10. Consider the following compound:



- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
  - 11. Consider the following compound: Br  $_{\rm NH_2}$   $_{\rm C}$   $_{\rm CH_2CH_3}$
- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (8) 12. Compare and contrast the following two addition reactions.

13. Write the name of the following chemical compound:

$$\begin{array}{c|c} \operatorname{CH}_3 & \operatorname{CH}_3 \\ & \Big| & \Big| \\ \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH} - \operatorname{C} \Longrightarrow \operatorname{C} - \operatorname{CH} - \operatorname{CH}_3 \end{array}$$

- (1) (a) Identify the parent alkyne.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.

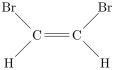
- 14. Draw the structure of 2-Methylhexa-1,5-diene.
- (1) (a) Identify the parent alkene.
  - (b) Identify all functional groups in the compound.
  - (c) Draw the chemical structure of the compound.

#### Naming Alkenes/Alkynes

- 1. Name the parent hydrocarbon. Find the longest hydrocarbon chain that contains the double or triple bond. Triple bonds take precedence over double bonds.
- 2. Number the carbon atoms in the chain. Begin numbering the parent hydrocarbon at the end nearer the double or triple bond. (Again triple bonds recieve precedence.) The numbering should be such that the double/triple bonds recieve the lowest number possible. If there is a tie, then use the numbering that gives other substituents the lowest numbers possible.
- 3. Write the full name. Number the substituents using the carbon atom that the substituent is attached to. Note the first alkene/yne carbon and place it before the ene suffix. For an example, hex-2-ene.

Show all work leading up to all responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

- (8) 1. Draw the mechanism for the following reaction:  $CH_3CH = CHCH_3 + HCl \longrightarrow CH_3CH_2CH_2CH_2Cl$
- (8) 5. Predict the products for the following reaction:


$$\operatorname{CH_3}$$
  $\stackrel{\operatorname{CH_3}}{\mid}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$   $\operatorname{CH_3}$ 

(8) 6. Predict the products for the following reaction:

(8) 7. Predict the products for the following reaction:

$$\begin{array}{c} \operatorname{Br} \\ \mid \\ \operatorname{CH_3-C-CH_2CH3} \\ \mid \\ \operatorname{Br} \end{array} \xrightarrow{2\operatorname{KOH}}$$

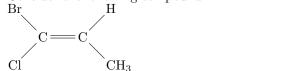
- (8) 2. Draw the mechanism for the following reaction:  $CH_3CH_2OH + H_3O^+ \longrightarrow CH_2=CH_2$
- 8. Consider the following compound:
- (6)(a) Would this compound need a cis, trans, (Z), or (E) designation?
- (6)(b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (8) 3. Predict the products for the following reaction:  $CH_3CHClCH_3 + KOH \longrightarrow$
- 9. Consider the following compound:



(8) 4. Predict the products for the following reaction: ether

 $CH_3$  —  $CH_2$  — CH =  $CH_2 + HBr$  $\dot{\mathrm{CH}}_3$ 

- (6)(a) Would this compound need a cis, trans, (Z), or (E) designation?
- (6)(b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?


Points earned: \_\_\_\_\_ out of a possible 80 points

(1)

(1)

(3)

10. Consider the following compound:



- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
  - 11. Consider the following compound: Br  $_{\rm NH_2}$   $_{\rm C}$   $_{\rm CH_2CH_3}$
- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (8) 12. Compare and contrast the following two addition reactions.

13. Write the name of the following chemical compound:

$$\begin{array}{c|c} \operatorname{CH}_3 & \operatorname{CH}_3 \\ & \Big| & \Big| \\ \operatorname{CH}_3 \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{CH} \longrightarrow \operatorname{C} \Longrightarrow \operatorname{C} \longrightarrow \operatorname{CH} \longrightarrow \operatorname{CH}_3 \end{array}$$

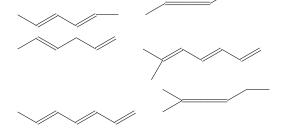
- (1) (a) Identify the parent alkyne.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.

- 14. Draw the structure of 2-Methylhexa-1,5-diene.
- (a) Identify the parent alkene.
  - (b) Identify all functional groups in the compound.
  - (c) Draw the chemical structure of the compound.

#### Naming Alkenes/Alkynes

- 1. Name the parent hydrocarbon. Find the longest hydrocarbon chain that contains the double or triple bond. Triple bonds take precedence over double bonds.
- 2. Number the carbon atoms in the chain. Begin numbering the parent hydrocarbon at the end nearer the double or triple bond. (Again triple bonds recieve precedence.) The numbering should be such that the double/triple bonds recieve the lowest number possible. If there is a tie, then use the numbering that gives other substituents the lowest numbers possible.
- 3. Write the full name. Number the substituents using the carbon atom that the substituent is attached to. Note the first alkene/yne carbon and place it before the ene suffix. For an example, hex-2-ene.

Show all work leading up to **all** responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

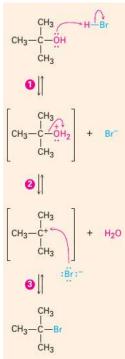

(5)

(4)

(6) 1. Write the product of this reaction.

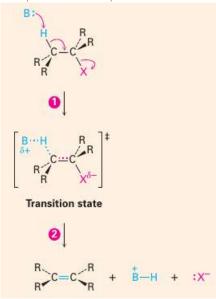
 $\operatorname{SnBu_3} + \operatorname{Cl} \stackrel{\operatorname{Pd \ catalyst}}{\longrightarrow}$ 

- 8. Consider the ion SCN<sup>-</sup> and the molecule SCNH. The electrognegativity of the elements involved are: S, 2.5; C, 2.5; N, 3.0.
- (5) (a) Draw all the resonance structures for the ion
- (6) 2. Write the product of this reaction.  $\underbrace{\text{CH}_3\text{CH}_2\text{CH}_2\text{OH}}_{\text{CH}_2\text{Cl}_2} \underbrace{\underbrace{\text{Periodinane}}_{\text{CH}_2\text{Cl}_2}$
- (6) 3. Write the product of this reaction. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH  $\xrightarrow{\text{CrO}_3}$   $\xrightarrow{\text{CrO}_3}$ +, acetone
- (5) (b) Draw all the resonance structures for the molecule SCNH.
- (6) 4. Write the product of this reaction.  $\begin{array}{ccc} \text{CH}_3\text{CHOHCH}_2\text{CH}_3 & \overbrace{\text{CH}_2\text{Cl}_2} \\ \end{array}$
- (6) 5. Write the product of this reaction.  $NH_3 + CH_3CH_2CH_2CI \xrightarrow{NaOH}$
- (10) 6. Write the mechanism of this reaction  $CH_3CH_2OH \xrightarrow{H_3O^+} H_2C = CH_2 + H_2O$
- (c) Draw in above or list the partial charges on all atoms for each resonance structure.
- (4) (d) Determine which resonance structure is the most stable. And, explain why it is the most stable.
- (8) 7. Circle the chemical structures that represent conjugated  $\pi$  systems.




(e) SCN<sup>-</sup> can act as a base by accepting a proton to make SCNH. How do the resonance structures explain that SCNH is a weak acid, but stronger than acetic acid (for an example)?

(3)


(3)

9. Consider the following mechanism.



- (3) (a) Identify the above reaction as either  $SN_1$ ,  $SN_2$ ,  $E_1$ , or  $E_2$ .
- (3) (b) If the OH¯ was replaced by a NH¯2¯, would the reaction occur more or less quickly? Explain.
- (3) (c) What effects could occur by changing the nucleophile (HBr) to something else?
- (3) (d) What kind of solvents are required for the polar protic, polar aprotic and/or nonpolar reaction? Explain.

10. Consider the following mechanism, where B is a base, X is a halide, and R can be alkyl groups.



(3) (a) Identify the above reaction as either  $SN_1$ ,  $SN_2$ ,  $E_1$ , or  $E_2$ .

(b) Would the reaction be faster or slower with a weaker base compared to a strong base?

(c) Which would have a faster reaction? A chloride (Cl $^-$ ) or bromide (Br $^-$ ) as the X.

(8) 11. Compare and contrast the above mechanisims, and in particular consider, the nucleophile, leaving group, and solvent. Which effect how quickly these reactions occur?

12. Write the name of the following chemical compound:

- (1) (a) Identify the parent alkyne.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.
  - 13. Draw the structure of 2-amino-2-methylpropane
- (1) (a) Identify the parent alkene.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Draw the chemical structure of the compound.

#### IUPAC Naming Rules<sup>1</sup>

- 1. Find the longest continuous carbon chain containing the highest priority functional group. Determine the root name for this parent chain.<sup>2</sup> Assign the parent name using the root name and the functional group. Note that the position number will need to go before the ending with dashes if the ending is anything other than -ane.
- Number the chain in the direction such that the
  position number of the first substituent is the
  smaller number. If the first substituents from
  either end have the same number, then number
  so that the second substituent has the smaller
  number, etc.
- 3. Determine the name and position number of each substituent.
- 4. Indicate the number of identical groups by the prefixes di, tri, tetra, etc.
- 5. Place the position numbers and names of the substituent groups, in alphabetical order, before the root name. In alphabetizing, ignore prefixes like sec-, tert-, di, tri, etc. and include the isoprefix. Always include a position number for each substituent, regardless of redundancies.

<sup>&</sup>lt;sup>1</sup>Derived and adjusted for this course from https://www.angelo.edu/faculty/kboudrea/organic/IUPAC\_Handout.pdf Note that this version will not work for cyclic compounds.

<sup>&</sup>lt;sup>2</sup>When there are two longest chains of equal length, use the chain with the greater number of substituents.

Show all work leading up to all responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

(5)

2.1.

(6) 1. Write the product of this reaction.

OH Periodinane  $CH_2Cl_2$ 

2. Write the product of this reaction.

SnBu<sub>3</sub> + Cl Pd catalyst

3. Write the product of this reaction. NH<sub>3</sub> + Cl NaOH

(6) 4. Write the product of this reaction.

 $CrO_3$ OH  $H_3O^+$ , acetone (5)(b) Draw all the resonance structures for the molecule NH<sub>2</sub>CH<sub>2</sub>COOH.

 $NH_2CH_2COO^-$ .

5. Write the product of this reaction.

OHPeriodinane  $CH_2Cl_2$ 

(5)(c) Draw in above or list the formal charges on all atoms for each resonance structure.

8. Consider the ion  $NH_2CH_2COO^-$  and the molecule

NH<sub>2</sub>CH<sub>2</sub>COOH. The electrognegativity of the el-

ements involved are: O, 3.5; C, 2.5; N, 3.0; H,

(a) Draw all the resonance structures for the ion

6. Write mechanism (10) $_{
m the}$ this reaction

(d) Determine which resonance structure is the most stable. And, explain why it is the most stable.

(4)

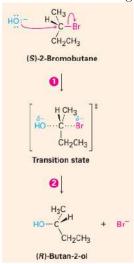
(4)

cepting a proton to make NH<sub>2</sub>CH<sub>2</sub>COOH. How do the resonance structures explain that NH<sub>2</sub>CH<sub>2</sub>COOH is a weak acid, but stronger

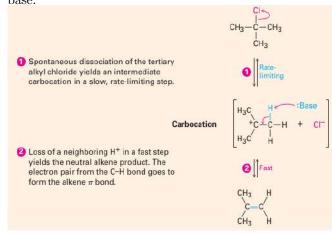
than acetic acid (for an example)?

(e) NH<sub>2</sub>CH<sub>2</sub>COO<sup>-</sup> can act as a base by ac-

(8) 7. Circle the chemical structures that represent conjugated  $\pi$  systems.


Points earned: \_\_\_\_\_ out of a possible 71 points

(3)


(3)

(3)

9. Consider the following mechanism.



10. Consider the following mechanism, where B is a base.



- (3) (a) Identify the above reaction as either  $SN_1$ ,  $SN_2$ ,  $E_1$ , or  $E_2$ .
- (b) Would the reaction be faster or slower with a weaker base compared to a strong base?

(a) Identify the above reaction as either  $SN_1$ ,

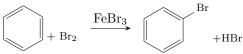
 $SN_2$ ,  $E_1$ , or  $E_2$ .

- (3) (b) If the Br  $\!\!\!\!$  was replaced by a Cl  $\!\!\!\!\!$  , would the reaction occur more or less quickly? Explain.
- (c) Which would have a faster reaction? A chloride (Cl<sup>-</sup>) or bromide (Br<sup>-</sup>) as the leaving group?
- (3) (c) What effects could occur by changing the nucleophile (OH $^-$ ) to something else?
- (8) 11. Compare and contrast the above mechanisims, and in particular consider, the nucleophile, leaving group, and solvent. Which effect how quickly these reactions occur?
- (3) (d) What kind of solvents are required for the polar protic, polar aprotic and/or nonpolar reaction? Explain.

12. Write the name of the following chemical compound:

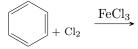
- (1) (a) Identify the parent alkyne.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.
  - 13. Draw the structure of 2-methylpent-3-thiol
- (1) (a) Identify the parent alkane.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Draw the chemical structure of the compound.

#### IUPAC Naming Rules<sup>1</sup>


- 1. Find the longest continuous carbon chain containing the highest priority functional group. Determine the root name for this parent chain.<sup>2</sup> Assign the parent name using the root name and the functional group. Note that the position number will need to go before the ending with dashes if the ending is anything other than -ane.
- 2. Number the chain in the direction such that the position number of the first substituent is the smaller number. If the first substituents from either end have the same number, then number so that the second substituent has the smaller number, etc.
- 3. Determine the name and position number of each substituent.
- 4. Indicate the number of identical groups by the prefixes di, tri, tetra, etc.
- 5. Place the position numbers and names of the substituent groups, in alphabetical order, before the root name. In alphabetizing, ignore prefixes like sec-, tert-, di, tri, etc. and include the isoprefix. Always include a position number for each substituent, regardless of redundancies.

<sup>&</sup>lt;sup>1</sup>Derived and adjusted for this course from https://www.angelo.edu/faculty/kboudrea/organic/IUPAC\_Handout.pdf Note that this version will not work for cyclic compounds.

<sup>&</sup>lt;sup>2</sup>When there are two longest chains of equal length, use the chain with the greater number of substituents.


Show all work leading up to **all** responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

(13) 1. Write the mechanism for this reaction.



- 5. Pyridine
- (7) (a) Draw all major resonance structures.

- (4) (b) Using Huckel's Rule, determine whether the molecule is aromatic, anti-aromatic, or non-aromatic.
- (7) (c) Explain your answer to part (b)
- (9) 2. Write the product of this reaction.



- 6. Cyclopentadienyl anion
- (7) (a) Draw all major resonance structures.

(9) 3. Write the product of this reaction.

$$+ \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4}$$

(4) (b) Using Huckel's Rule, determine whether the molecule is aromatic, anti-aromatic, or non-aromatic.

(9) 4. Write the product of this reaction.

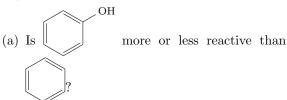
$$\begin{array}{c} & \text{AlCl}_3 \\ & + \text{CH}_3\text{Cl} \end{array}$$

(7) (c) Explain your answer to part (b)

(5)

(2)

(2)

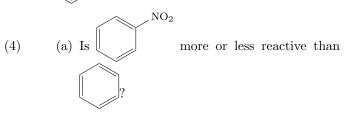

7. Consider the reactants below:

$$\begin{array}{c} \text{CH}_3 \\ + \text{CH}_3\text{CH}_2\text{Cl} \end{array} \xrightarrow{AlCl_3}$$

(4) (a) Is 
$$\operatorname{CH}_3$$
 more or less reactive than (

9. Consider the reactants below:

$$\begin{array}{|c|c|} \hline \\ & + \text{HNO}_3 \end{array} \xrightarrow{\text{H}_2\text{SO}_4}$$




(4) (b) Draw the major product(s) of the reaction.

(b) Draw the major product(s) of the reaction.

8. Consider the reactants below:

$$\begin{array}{c} \text{NO}_2 \\ + \text{Cl}_2 \end{array} \xrightarrow{AlCl_3}$$



10. Write the name of the following chemical compound:

(a) Identify all functional groups in the compound.

(b) Write the IUPAC name of the compound.

11. Draw the structure of 1-Chloro-3,5-dimethylbenzene

(2) (a) Identify all functional groups in the compound.

(2) (b) Draw the chemical structure of the compound.

(5) (b) Draw the major product(s) of the reaction.

#### **IUPAC Naming for Aromatic Compounds**

Monosubstituted Aromatic Rings Monosubstituted benzenes are systematically named in the same manner as other hydrocarbons, with -benzene as the parent name. Also, many monosubstituted benzene rings go by their common names. If the benzene ring is considered to be a substituent, then the name phenyl sometimes abbreviated as Ph.

#### Disubstituted Aromatic Rings

ortho- (o-) next to each other in a benzene ring

meta- (m) separated by one carbon in a benzene ring

para- (p) across from each other in a benzene ring

**Trisubstituted Aromatic Rings** benzenes with more than two substituents are named by choosing a point of attachment as carbon 1 and numbering the substituents on the ring so that the second substituent has as low a number as possible. The substituents are listed alphabetically when writing the name.

Show all work leading up to **all** responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

(13) 1. Write the mechanism for this reaction.

$$\begin{array}{c|c} & \text{AlCl}_3 \\ & \text{+ CH}_3\text{Cl} \end{array} \xrightarrow{\text{AlCl}_3} + \text{HCl} \\ \end{array}$$

- 5. Pyrrole ....
- (7) (a) Draw all major resonance structures.

- (4) (b) Using Huckel's Rule, determine whether the molecule is aromatic, anti-aromatic, or non-aromatic.
- (7) (c) Explain your answer to part (b)
- (9) 2. Write the product of this reaction.

$$+ Br_2 \xrightarrow{\text{FeBr}_3}$$

- 6. Phenolate anion  $\bigcup_{O_{\ominus}}$
- (7) (a) Draw all major resonance structures.

(9) 3. Write the product of this reaction.

$$+ SO_3 \xrightarrow{\text{H}_2SO_4}$$

- (4) (b) Using Huckel's Rule, determine whether the molecule is aromatic, anti-aromatic, or non-aromatic.
- (9) 4. Write the product of this reaction.

$$\begin{array}{c|c} O & \\ \parallel & \\ C \\ C \end{array}$$

(7) (c) Explain your answer to part (b)

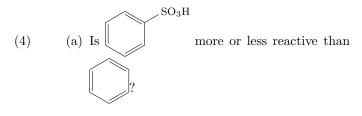
(5)

#### 7. Consider the reactants below:

$$\begin{array}{c} \text{Cl} \\ + \text{CH}_3\text{CH}_2\text{Cl} \end{array}$$

#### 9. Consider the reactants below:

$$CH_3$$
 $+ HNO_3$ 
 $CH_3$ 
 $CH_3$ 


more or less reactive than

## (4) (b) Draw the major product(s) of the reaction.

(b) Draw the major product(s) of the reaction.

#### 8. Consider the reactants below:

$$SO_3H$$
  $+ Cl_2$   $AlCl_3$ 



10. Write the name of the following chemical compound:

(2) (a) Identify all functional groups in the compound.

(2) (b) Write the IUPAC name of the compound.

11. Draw the structure of 1-Nitro-2,4,5-trimethylbenzene

(2) (a) Identify all functional groups in the compound.

(2) (b) Draw the chemical structure of the compound.

(5) (b) Draw the major product(s) of the reaction.

#### **IUPAC Naming for Aromatic Compounds**

Monosubstituted Aromatic Rings Monosubstituted benzenes are systematically named in the same manner as other hydrocarbons, with -benzene as the parent name. Also, many monosubstituted benzene rings go by their common names. If the benzene ring is considered to be a substituent, then the name phenyl sometimes abbreviated as Ph.

#### Disubstituted Aromatic Rings

ortho- (o-) next to each other in a benzene ring

meta- (m) separated by one carbon in a benzene ring

para- (p) across from each other in a benzene ring

**Trisubstituted Aromatic Rings** benzenes with more than two substituents are named by choosing a point of attachment as carbon 1 and numbering the substituents on the ring so that the second substituent has as low a number as possible. The substituents are listed alphabetically when writing the name.

Show all work leading up to all responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

1. Write the mechanism for this reaction.



(10) 4. Predicting the products for the following reaction:

$$\begin{array}{c} O \\ \parallel \\ C \\ CH_3 \end{array} \stackrel{1)\text{CH}_3\text{CH}_2\text{MgCH}_2}{\longrightarrow} \begin{array}{c} O \\ 2)\text{H}_3\text{O} \stackrel{1}{+} \end{array}$$

- (13) 2. Write the mechanism for this reaction. CH<sub>3</sub>CH<sub>2</sub> CH<sub>3</sub> + CH<sub>3</sub>CH<sub>2</sub>OH  $\xrightarrow{\text{CH}_3\text{CH}_2}$  CH<sub>3</sub>CH<sub>2</sub> CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>  $\xrightarrow{\text{CH}_3\text{CH}_2}$  CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>

(10) 6. Predicting the products for the following reaction: 
$$\begin{array}{c|c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

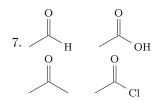
$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$


$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

$$\begin{array}{c} O & \text{1} \\ O & \text{1} \\ O & \text{1} \end{array}$$

(1)

(2)



- (5)(a) Circle the alpha proton in each of the following structures.
- (6)(b) Order the molecules above from least acidic to most acidic.
- (4)molecules.

(c) Explain your choice for most and least acidic

8. 
$$\bigcirc$$
 OCH<sub>3</sub>  $\bigcirc$  OCH<sub>3</sub>  $\bigcirc$  OCH<sub>3</sub>  $\bigcirc$  Cl

- (a) Order the molecules above from least reactive (7)to most reactive.
- (9)(b) Explain your choice for most and least reactive carbocyclic acid derivatives.

9. Write the name of the following chemical compound:

- (a) Identify all functional groups in the compound.
- (b) Write the IUPAC name of the compound.
- 10. Write the name of the following chemical compound:

$$\operatorname{Br} \bigvee_{\operatorname{NH}_2}^{\operatorname{O}} \operatorname{H}$$

- (2)(a) Identify all functional groups in the compound.
- (2)(b) Write the IUPAC name of the compound.
  - 11. Draw the structure of 3.3.5.5-Tetramethyl-4heptanone
- (1)(a) Identify all functional groups in the compound.
- (2)(b) Draw the chemical structure of the compound.

IUPAC Naming for Ketones, Aldehydes, and Carboxylic acids Be able to name aldehydes (-al), ketones (-one), and carboxylic acids (-ic acid). These ending take precendence over the others that we've learned.

- 1. Recognize and prioritize the functional group(s) present.
- 2. Identify and number the longest continuous carbon chain to give the highest ranking group the lowest possible number.
- 3. Cite the substituents (branches) alphabetically using the numbering determined above.
- 4. Recognize an classify any stereochemistry (E/Z, R/S, cis/trans, etc).

With these four pieces of information, the IU-PAC name is written using the format below. This same format applies to ALL the organic compounds. branches are cited alphabetically parent chain (homologous series)

# stereochemistriy-#-substituent-(#)-alk?n-#-suffix spatial orientation position & id of multiple bond

|     |    | Give complete ans                                                                                                         | swers                                         | for | all r | esponses.                                                                                                                          |
|-----|----|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|-------|------------------------------------------------------------------------------------------------------------------------------------|
| (4) | 1. | Why does he encourage you not to wear contact lenses to an organic chemistry lab?                                         |                                               | 8.  |       | k up the information for 2-Vinylnaphthalene ne CRC Handbook                                                                        |
|     |    |                                                                                                                           | (2)                                           |     | (a)   | Chemical formula:                                                                                                                  |
| (7) | 2. | Why is it good to be careful of touching your skin during the lab?                                                        | (2)                                           |     | (b)   | Chemical structure:                                                                                                                |
|     |    |                                                                                                                           | (2)                                           |     | (c)   | Insoluble in:                                                                                                                      |
| (6) | 3. | What does he mean by "drive defensively"?                                                                                 | (2)                                           |     | (d)   | Soluble in:                                                                                                                        |
| (5) | 4. | Which would be a better choice to wear to the Organic Chemistry Lab, a cotton t-shirt or a polyester polo shirt? Explain. | (2)                                           | 9.  | (a)   | k up capsaicin in the Aldrich Catlaog.  IUPAC name.                                                                                |
| (7) | 5. | Why are bursen burners generally not used in the organic chemistry lab?                                                   | <ul><li>(2)</li><li>(2)</li><li>(2)</li></ul> |     | (c)   | Chemical formula  Formula/Molecular weight  Melting Point:                                                                         |
| (7) | 6. | If you have spill some acid on your hand (but not clothing), what two actions should you take?                            | (4)                                           |     | (e)   | Name 4 Hazards that are listed:                                                                                                    |
| (2) | 7. | Look up the information for vinyl formate in the CRC Handbook.  (a) Chemical formula:                                     | (1)<br>(7)                                    | 10. | Sho   | The cost for 1 g in its natural form.  uld a lab notebook be written in pencil or pen?  ou make a mistake what do you do? Why?     |
| (2) |    | (b) Chemical structure:                                                                                                   |                                               |     |       |                                                                                                                                    |
| (2) |    | (c) Physical form:                                                                                                        | (7)                                           | 11  |       | lab back (an manual) talla yay ta maaguna 24                                                                                       |
| (1) |    | (d) Molecular weight:                                                                                                     | (1)                                           | 11. | g of  | lab book (or manual) tells you to measure 24 sodium bromide. You measure out 24.123 g of um bromide. What do you write in your lab |
| (2) |    | (e) Melting point:                                                                                                        |                                               |     |       | ebook?                                                                                                                             |
| (2) |    | (f) Boiling point:                                                                                                        |                                               |     |       |                                                                                                                                    |
| (2) |    | (g) Density:                                                                                                              |                                               |     |       |                                                                                                                                    |

| lab notes for a technique experiment important.                                                          |              |
|----------------------------------------------------------------------------------------------------------|--------------|
| (1) (a) Date of Introductory Notes:                                                                      |              |
| (4) (b) Diagrams of the apparatus: (3) (e) What observations do you write any tens nations in as well?   |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
| (3) (c) Description of what actually occured in the lab: (4) 13. Differentiate between clear, cloudy and | d colorless. |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |
|                                                                                                          |              |

(+) Camptothecin binds irreversibly to the DNA-topoisomerase I complex, inhibiting the reassociation of DNA after cleavage by ropoisomerase I and traps the enzyme in a covalent linkage with The enzyme complex is ubiquinated and destroyed by the 26S protessome thus depleting cellular topoisomerase I MK isomer

chloroform/methanol (41) (4 mg/mt) Danger H301 store at 2-8°C C9911-100MG glass btl. 80.00 C9911-250MG glass bri 250 mg 175.00 C9911-1G

glass btl 19 477.00 Balsam Canada 18007-47-41 0.99 g/mL, 25 °C 1 522

Mounting medium for microscopy

Canada Balsam is a natural mounting medium obtained from balsam ir trees. The optical properties are nearly identical with those of glass. Specimens must be dehydrated. Permanent slides mounted with Canada Balsam have been stored for over a century.

Warning H227

| C1795-25ML  | glass btl | 25 mL  | 63.00  |
|-------------|-----------|--------|--------|
| C1795-100ML | glass btl | 100 mL | 201.50 |

#### L-(+)-Canavanine sulfate salt monohydrate, 98%

[206996-57-8] Beil. 4,III,1637 H;NC(=NH)NHOCH2CH2CH(NH2)CO2HH2SO4H2O FW 292.27  $\log_{10}^{20} + 17.3^{\circ}$ , c = 2 in H<sub>2</sub>O

Warning H302 + H312-H332 P280 851839-1G glass btl 155.50

#### Candelilla wax

[8006-44-8] Merck 14,1738

68 to 72 ℃ density 0.988 g/mL 25 ℃ \_\_\_ >240 °C

soluble in ethanol benzene and petroleum ether (hot) seponification value 44 mg KOH/g iodine value 19-44 and number \_\_\_\_\_\_ 11-19 mg KOH/g ester number \_\_\_\_\_ 40-47 432288-250G glass btl 250 g 3490 432288-1KG glass btl

(A-aPhos)<sub>2</sub>PdCl<sub>2</sub>, see Bis((dicyclohexyl)(4-dimethylaminophenyl)phosphine) palladium(II) chloride Page 313

Capric acid, see Decanoic acid Page 838 Capric anhydride, see Decanoic anhydride Page 838 Caproic acid, see Hexanoic acid Page 1435

#### E-Caprolactam, 99%

Aza-2-cycloheptanone; 2-Oxohexamethyleneimine [105-60-2] Merck 14,1761; Beil 21,V,6,444; Fieser 9.316 CHINO FW 113.16



88.40

1 kg

\_\_ 68 to 71 °C vp \_\_\_\_\_\_ <0.01 mmHg (20 °C) 136-138 °C/10 mmHg air 707 °F Warning H302 + H332-H313-H315-H317-H319-H335 P261-P305 +

| C2204-5G   |           |       |       |
|------------|-----------|-------|-------|
| C2204-250G | glass btl | 5 g   | 19.40 |
| C22041KG   | poly btl  | 250 g | 22.40 |
| TING       | paly btl  | 1 kg  | 31.00 |

#### y-Caprolactone, 98%

y-Ethyl-y-butyrolactone [695-06-7] Beil 17,238 CH10O2 FW 11414 HJC.



bp \_\_\_\_\_\_ 219 °C m<sup>2</sup>S \_\_\_\_ density \_\_\_\_\_\_ 1023 g/mL, 25 °C Warning H316-H319 P305 + P351 + P338

303836-25G glass btl

#### E-Caprolactone, 97%

6-Caprolactone monomer; 2-Oxepanone; 6-Hexanolactone [502-44-3] Beil 17,V,9,34 C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> FW 114.14



26.00

bo -97-98 °C/15 mmHg vd \_\_\_\_\_ density 1.03 g/mL, 25 °C vp 0.01 mmHg (20 °C) 1.463

Danger H303-H315-H318-H335 P261-P280-P305 + P351 +

| 704067-100G | glass brl | 100 g | 23.40 |
|-------------|-----------|-------|-------|
| 704067-500G | glass btl | 500 g | 76.20 |

☑ 6-Caprolactone polymer, see Polycaprolactone Page 2095 Caproyl chloride, see Hexanoyl chloride Page 1436 Capryl alcohol, see 1-Octanol Page 1945 Caprylamine, see Octylamine Page 1948 Caprylic acid, see Octanoic acid Page 1945 sec-Caprylic alcohol, see 2-Octanol Page 1946 Caprylolactam, see 2-Azacyclononanone Page 208 Capryloyl chloride, see Octanoyl chloride Page 1947 Capryloyl-2,4,6,8-<sup>13</sup>C<sub>4</sub> coenzyme A, lithium salt, see Octanoyl-2,4,6,8-<sup>13</sup>C<sub>4</sub>

Coenzyme A, lithium salt Page 1947

#### CAPS, ≥98.0%

3-(Cyclohexylamino)-1-propanesulfonic acid [1135-40-6] Merck 14,1767 C<sub>6</sub>H<sub>11</sub>NH(CH<sub>2</sub>)<sub>3</sub>SO<sub>3</sub>H FW 221.32 pKa 10.4 useful pH range 9.7 - 11.1 тр \_\_\_\_ >300 °C pKa (25 °C) 104 pH range ...



| C2632-1KG    | poly drum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 kg      | 413.00 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| C2632-250G   | poly btl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250 g     | 136.00 |
|              | The Court of the C | 6 × 100 g | 258.00 |
| C2632-6X100G | poly ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 g     | 55.20  |
| C2632-100G   | paly btt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 -     |        |
| C2632-25G    | poly btl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 g      | 21.30  |

#### Capsaicin

8-Methyl-N-vanillyl-trans-6-nonenamide

[404-86-4] Merck 14 1768. Beil. 13.IV 2588

(CH<sub>3</sub>)<sub>2</sub>CHCH=CH(CH<sub>2</sub>)<sub>4</sub>CONHCH<sub>2</sub>C<sub>6</sub>H<sub>3</sub>·4-(OH)-3-(OCH<sub>3</sub>) FW 305.41

Prototype vanilloid receptor agonist neurotoxin.

Active component of cayenne pepper

Danger H301 + H311-H315-H317-H318-H334-H335 P261-P280-P301 + P310-P305 + P351 + P338-P342 +

#### ▶ natural composition

capsaicin 65%

dihydrocapsaicin 35%

| 360376-250MG | glass bti | 250 mg | 45.00  |
|--------------|-----------|--------|--------|
| 360376-1G    | glass btl | 1 g    | 136.00 |

#### ▶ from Capsicum sp., ≥50% (HPLC)

| store at: 2-8°C |           |        | -35%   |
|-----------------|-----------|--------|--------|
| 21750-100MG-F   | glass btl | 100 mg | 34 00  |
| 21750-1G-F      | glass btl | 1 g    | 175.50 |
| 21750-5G-F      | glass btl | 5 g    | 627.00 |

#### PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS

The basic physical constants and structure diagrams for about 10,900 organic compounds are presented in this table. An effort has been made to include the compounds most frequently encountered in the laboratory, the workplace, and the environment. Particular emphasis has been given to substances that are considered environmental or human health hazards. In making the selection of compounds for the table, added weight was assigned to the appearance of a compound in various lists or reference sources such as:

- Laboratory reagent lists, e.g., the ACS Reagent Chemicals volume (Ref. 1)
- The DIPPR list of industrially important compounds (Ref. 2) and the (much larger) TSCA Inventory of chemicals used in commerce.
- The Hazardous Substance Data Bank (Ref. 3)
- The UNEP list of Persistent Organic Pollutants (Ref. 4)
- Chemicals on Reporting Rules (CORR), a database of about 7500 regulated compounds prepared by the Environmental Protection Agency (Ref. 5)
- The EPA Integrated Risk Information System (IRIS), a database of human health effects of exposure to chemicals in the environment (Ref. 6)
- Compendia of chemicals of biochemical or medical importance, such as The Merck Index (Ref. 10)
- Specialized tables in this *Handbook*

It should be noted that the above lists vary widely in their choice of chemical names, and even in the use of Chemical Abstracts Registry Numbers. To the extent possible, we have attempted to systematize the names and registry numbers for this table.

Clearly, criteria of this type are somewhat subjective, and compounds considered important by some users have undoubtedly been omitted. Suggestions for additional compounds or other improvements are welcomed.

The data in the table have been derived from many sources, including both the primary literature and evaluated compilations. The Handbook of Data on Organic Compounds, Third Edition (Ref. 7) and the Combined Chemical Dictionary (Ref. 8) were important sources. Other useful sources of physical property data on organic compounds are listed in Refs. 9-19. The values in the table for the normal boiling point and the melting point that are accompanied with uncertainties (in parentheses) have been critically evaluated using the NIST ThermoData Engine (TDE, Ref. 20), designed to implement the dynamic data evaluation concept (Refs. 21-24). This concept requires large electronic databases capable of storing essentially all relevant experimental data known to date with detailed descriptions of metadata and uncertainties. The combination of these electronic databases with expert-system software, designed to automatically generate recommended property values based on available experimental and predicted data, leads to the ability to produce critically evaluated data dynamically or "to order." The uncertainties listed are combined expanded uncertainties (level of confidence, approximately 95 %) representing the most comprehensive measure of the overall data reliability (Refs. 25-28).

The table is arranged alphabetically by substance name, which generally is either an IUPAC systematic name or, in the case of pesticides, pharmaceuticals, and other complex compounds, a simple trivial name. Names in ubiquitous use, such as acetic

acid and formaldehyde, are adopted rather than their systematic equivalents. Synonyms are given in the column following the primary name, and structure diagrams are given on the page facing the data listing. The explanation of the data columns follows:

No.: An identification number used in the indexes.

Name: Primary name of the substance

**Synonym:** A synonym in common use. When the primary name is non-systematic, a systematic name may appear here.

**Mol. Form.:** The molecular formula written in the Hill convention.

**CAS RN.:** The Chemical Abstracts Service Registry Number for the compound.

**Mol. Wt:** Molecular weight (relative molar mass) as calculated with the 2001 IUPAC Standard Atomic Weights.

**Physical Form:** A notation of the physical phase, color, crystal type, or other features of the compound at ambient temperature. Abbreviations are given below.

**mp:** Normal melting point in °C. A value is sometimes followed by "dec", indicating decomposition is observed at the stated temperature (so that it is probably not a true melting point). The notation "tp" indicates a triple point, where solid, liquid, and gas are in equilibrium. A number in parentheses following the melting point value is the combined expanded uncertainty (see above).

bp: Normal boiling point in °C, if it is available. This is the temperature at which the liquid phase is in equilibrium with the vapor at a pressure of 760 mmHg (101.325 kPa). A number in parentheses following the boiling point value is the combined expanded uncertainty (see above). A notation "sp" following the value indicates a sublimation point, where the vapor pressure of the solid phase reaches 760 mmHg. When a notation such as "dec" (decomposes) or "exp" (explodes) follows the value, the temperature may not be a true boiling point. A simply entry "sub" indicates the solid has a significant sublimation pressure at ambient temperatures. When the normal boiling point is not available, a boiling point at reduced pressure may be listed with a superscript indicating the pressure in mmHg.

**den:** Density (mass per unit volume) in g/cm³. The temperature in °C is indicated by a superscript. Values refer to the liquid or solid phase, and all values are true densities, not specific gravities. The number of decimal places gives a rough estimate of the accuracy of the value.

 $n_{\rm D}$ : Refractive index, at the temperature in °C indicated by the superscript. Unless otherwise indicated, all values refer to a wavelength of 589 nm (sodium D line). Values are given only for liquids and solids.

**Solubility:** Qualitative indication of solubility in common solvents. Abbreviations are:

i insoluble sl slightly soluble s soluble vs very soluble msc miscible dec decomposes

Abbreviations for solvents are given below.

In order to facilitate the location of compounds in the table, an index to synonyms follows the main table. Indexes to Molecular Formulas and CAS Registry Numbers are available in the electronic versions of the *Handbook* or as pdf files by request via e-mail (fiona.macdonald@taylorandfrancis.com).

The assistance of members of the Thermodynamics Research Center (TRC) of the National Institute of Standards and Technology (Vladimir Diky, Rob Chirico, Andrei Kazakov) and especially Chris Muzny and Michael Frenkel in the determination

of values of the normal-boiling-point and melting-point temperatures with uncertainties is greatly appreciated. The editors of the Handbook are much indebted to Chris Muzny who spent countless hours in producing these critically evaluated results. The assistance of Fiona Macdonald in checking names and formulas is gratefully acknowledged, as well as the efforts of Janice Shackleton, Trupti Desai, Nazila Kamaly, Matt Griffiths, and Lawrence Braschi in preparing the structure diagrams.

#### **List of Abbreviations**

| Ac        | acetyl               | flr      | fluorescent           | pow      | powder               |
|-----------|----------------------|----------|-----------------------|----------|----------------------|
| $Ac_2O$   | acetic anhydride     | fum      | fumes, fuming         | Pr       | propyl               |
| AcOEt     | ethyl acetate        | gl       | glacial               | PrOH     | 1-propanol           |
| ac        | acid                 | gr       | gray                  | pr       | prisms               |
| ace       | acetone              | gran     | granular              | purp     | purple               |
| al        | alcohol (ethanol)    | grn      | green                 | ру       | pyridine             |
| alk       | alkali               | hex      | hexagonal             | pym      | pyramids, pyramidal  |
| amor      | amorphous            | HOAc     | acetic acid           | reac     | reacts               |
| anh       | anhydrous            | hp       | heptane               | rhom     | rhombic              |
| aq        | aqueous              | hx       | hexane                | S        | soluble              |
| bipym     | bipyramidal          | hyd      | hydrate               | sat      | saturated            |
| bl        | blue                 | hyg      | hygroscopic           | sc       | scales               |
| blk       | black                | i        | insoluble             | sl       | slightly soluble     |
| bp        | boiling point        | i-       | iso-                  | soln     | solution             |
| br        | brown                | iso      | isooctane             | sp       | sublimation point    |
| bt        | bright               | lf       | leaves                | stab     | stable               |
| Bu        | butyl                | lig      | ligroin               | sub      | sublimes             |
| BuOH      | 1-butanol            | liq      | liquid                | sulf     | sulfuric acid        |
| bz        | benzene              | lo       | long                  | syr      | syrup                |
| chl       | chloroform           | mcl      | monoclinic            | tab      | tablets              |
| col       | colorless            | Me       | methyl                | tcl      | triclinic            |
| con, conc | concentrated         | MeCN     | acetonitrile          | tetr     | tetragonal           |
| cry       | crystals             | MeOH     | methanol              | tfa      | trifluoroacetic acid |
| ctc       | carbon tetrachloride | misc     | miscible              | thf, THF | tetrahydrofuran      |
| cy, cyhex | cyclohexane          | mp       | melting point         | tol      | toluene              |
| dec       | decomposes           | n        | refractive index      | tp       | triple point         |
| den       | density              | nd       | needles               | trg      | trigonal             |
| dil       | dilute               | oct      | octahedra, octahedral | unstab   | unstable             |
| diox      | dioxane              | oran     | orange                | vap      | vapor                |
| dk        | dark                 | orth     | orthorhombic          | viol     | violet               |
| DMF       | dimethylformamide    | os       | organic solvents      | visc     | viscous              |
| DMSO      | dimethyl sulfoxide   | pa       | pale                  | vol      | volatile             |
| efflor    | efflorescent         | peth     | petroleum ether       | VS       | very soluble         |
| Et        | ethyl                | Ph       | phenyl                | W        | water                |
| EtOH      | ethanol              | PhCl     | chlorobenzene         | wh       | white                |
| eth       | diethyl ether        | $PhNH_2$ | aniline               | xyl      | xylene               |
| exp       | explodes             | $PhNO_2$ | nitrobenzene          | ye       | yellow               |
| fl        | flakes               | pl       | plates                |          |                      |
|           |                      |          |                       |          |                      |

| No.            | Name                                                     | Synonym                                                                        | Mol. Form.                                                                      | CAS RN                 | Mol.<br>Wt.       | Physical<br>Form       | mp/°C         | bp/°C                     | den<br>g cm <sup>-3</sup>                   | n <sub>D</sub>                               | Solubility                                    |
|----------------|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|-------------------|------------------------|---------------|---------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------------------|
| 10794          | Vinyl butanoate                                          |                                                                                | C <sub>6</sub> H <sub>10</sub> O <sub>2</sub>                                   | 123-20-6               | 114.142           |                        |               | 116.7                     | 0.900620                                    |                                              |                                               |
| 10795          | Vinyl trans-2-butenoate                                  | Vinyl crotonate                                                                | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub>                                    | 3234-54-6              | 112.127           | om. /- N               | CC            |                           |                                             |                                              | s ctc                                         |
| 10796          | 9-Vinyl-9 <i>H</i> -carbazole                            |                                                                                | $C_{14}H_{11}N$                                                                 | 1484-13-5              | 193.244           | cry (al)               | 66            |                           |                                             |                                              | i H <sub>2</sub> 0; sl Et0H;<br>vs eth        |
| 10797          | Vinylcyclohexane                                         |                                                                                | C <sub>8</sub> H <sub>14</sub>                                                  | 695-12-5               | 110.197           |                        |               | 127(6)                    | 0.816619                                    | 1.45519                                      | 10 041                                        |
| 10798          | 1-Vinylcyclohexene                                       |                                                                                | C <sub>8</sub> H <sub>12</sub>                                                  | 2622-21-1              | 108.181           |                        |               | 144(7)                    | 0.862315                                    | 1.491520                                     | i H <sub>2</sub> O; s eth, bz;                |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | vs MeOH                                       |
| 10799          | 4-Vinylcyclohexene                                       |                                                                                | $C_8H_{12}$                                                                     | 100-40-3               | 108.181           | liq                    | -108.9        | 130(4)                    | 0.829920                                    | 1.463920                                     | i H <sub>2</sub> O; s eth, bz,<br>peth        |
| 10800          | Vinylcyclopentane                                        |                                                                                | C <sub>7</sub> H <sub>12</sub>                                                  | 3742-34-5              | 96.170            | liq                    | -126.4(0.2)   | 99(3)                     | 0.783420                                    | 1.436020                                     | pour                                          |
| 10801          | Vinyldiethoxymethylsilane                                |                                                                                | C <sub>7</sub> H <sub>16</sub> O <sub>2</sub> Si                                | 5507-44-8              | 160.287           |                        | - (- )        | 133                       | 0.862020                                    | 1.400120                                     |                                               |
| 10802          | Vinylethoxydimethylsilane                                |                                                                                | C <sub>6</sub> H <sub>14</sub> OSi                                              | 5356-83-2              | 130.260           |                        |               | 99                        | 0.79020                                     | 1.398320                                     |                                               |
| 10803          | 1-Vinyl-4-fluorobenzene                                  |                                                                                | C <sub>8</sub> H <sub>7</sub> F                                                 | 405-99-2               | 122.140           |                        | -34.5         | 67.4 <sup>50</sup>        | 1.022020                                    | 1.515020                                     | i H <sub>2</sub> 0; s Et0H,                   |
| 10004          | VEd-f                                                    |                                                                                | 011.0                                                                           | 000 45 5               | 70.000            | !!                     | 70            | 40/10)                    | 0.00530                                     | 1.004030                                     | eth, bz                                       |
| 10804<br>10805 | Vinyl formate<br>2-Vinylfuran                            |                                                                                | C <sub>3</sub> H <sub>4</sub> O <sub>2</sub><br>C <sub>6</sub> H <sub>6</sub> O | 692-45-5<br>1487-18-9  | 72.063<br>94.111  | visc liq<br>liq        | -78<br>-94(4) | 42(18)<br>101(3)          | 0.965 <sup>20</sup><br>0.9445 <sup>19</sup> | 1.3842 <sup>20</sup><br>1.4992 <sup>19</sup> |                                               |
| 10806          | 1-Vinyl-2-methoxybenzene                                 |                                                                                | C <sub>9</sub> H <sub>10</sub> O                                                | 612-15-7               | 134.174           |                        | 29            | 215(18)                   |                                             | 1.538820                                     | vs ace, bz, eth,                              |
|                | 1 VIIIyi Z modioxybonzono                                |                                                                                | Ogi 1100                                                                        | 012 10 7               | 101.171           | nu .                   | 20            | 210(10)                   | 1.0010                                      | 1.0000                                       | EtOH                                          |
| 10807          | 1-Vinyl-3-methoxybenzene                                 |                                                                                | C <sub>9</sub> H <sub>10</sub> O                                                | 626-20-0               | 134.174           |                        |               | 91 <sup>15</sup>          | 0.991920                                    | 1.5586 <sup>23</sup>                         | i H <sub>2</sub> 0; s EtOH,<br>eth, bz        |
| 10808          | 1-Vinyl-4-methoxybenzene                                 |                                                                                | C <sub>9</sub> H <sub>10</sub> O                                                | 637-69-4               | 134.174           |                        | 2.0           | 208(19)                   | 1.000113                                    | 1.564213                                     | i H <sub>2</sub> 0; s Et0H,                   |
| 10000          | O.Minut O. mathed 4 incomed                              |                                                                                | 0.11                                                                            | F0F1 07 7              | 004.050           |                        |               | 105%                      | 0.070030                                    | 1.510036                                     | eth, bz; sl ctc                               |
| 10809          | 6-Vinyl-6-methyl-1-isopropyl-<br>3-(1-methylethylidene)- |                                                                                | C <sub>15</sub> H <sub>24</sub>                                                 | 5951-67-7              | 204.352           |                        |               | 1258                      | 0.878220                                    | 1.513026                                     | vs ace, bz                                    |
|                | cyclohexene, (S)-                                        |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              |                                               |
| 10810          | 1-Vinylnaphthalene                                       |                                                                                | C <sub>12</sub> H <sub>10</sub>                                                 | 826-74-4               | 154.207           |                        |               | 12415                     | 1.065620                                    | 1.64420                                      |                                               |
| 10811          | 2-Vinylnaphthalene                                       |                                                                                | C <sub>12</sub> H <sub>10</sub>                                                 | 827-54-3               | 154.207           |                        | 65(2)         | 135 <sup>18</sup>         |                                             |                                              | i H <sub>2</sub> O; s EtOH,<br>ace, bz        |
| 10812          | 1-Vinyl-3-nitrobenzene                                   |                                                                                | C <sub>8</sub> H <sub>7</sub> NO <sub>2</sub>                                   | 586-39-0               | 149.148           |                        | -10           | 12011                     | 1.155232                                    | 1.583620                                     | i H <sub>2</sub> O; s EtOH,                   |
| .00.2          | · · · · · · · · · · · · · · · · · · ·                    |                                                                                | 08.17.102                                                                       | 000 00 0               |                   |                        |               | .20                       | 002                                         | 110000                                       | eth, bz, chl,                                 |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | lig, HOAc                                     |
| 10813          | 1-Vinyl-4-nitrobenzene                                   |                                                                                | C <sub>8</sub> H <sub>7</sub> NO <sub>2</sub>                                   | 100-13-0               | 149.148           | pr (lig)               | 29            | dec                       |                                             |                                              | vs EtOH, eth; s<br>chl, HOAc, lig             |
| 10814          | 5-Vinyl-2-norbornene                                     | 5-Vinylbicyclo[2.2.1]hept-2-                                                   | C <sub>9</sub> H <sub>12</sub>                                                  | 3048-64-4              | 120.191           | lia                    | -80           | 140.7(0.5)                | 0.841                                       | 1.481020                                     | cili, HoAc, lig                               |
|                | o tingi 2 nordoniono                                     | ene                                                                            | 9.12                                                                            |                        |                   | 9                      |               |                           |                                             |                                              |                                               |
| 10815          | Vinyl octadecanoate                                      | Vinyl stearate                                                                 | $C_{20}H_{38}O_2$                                                               | 111-63-7               | 310.515           |                        | 29            | 167 <sup>2</sup>          | 0.851720                                    |                                              | sl chl                                        |
| 10816          | 3-Vinyl-7-oxabicyclo[4.1.0]-                             |                                                                                | C <sub>8</sub> H <sub>12</sub> O                                                | 106-86-5               | 124.180           |                        | <-100         | 169                       | 0.958120                                    | 1.470020                                     |                                               |
| 10817          | heptane<br>Vinyloxirane                                  |                                                                                | C <sub>4</sub> H <sub>6</sub> O                                                 | 930-22-3               | 70.090            |                        |               | 68(2)                     | 0.900625                                    | 1.416820                                     | s EtOH, eth, bz                               |
| 10818          | 2-(Vinyloxy)ethanol                                      | Ethylene glycol monovinyl                                                      | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>                                    | 764-48-7               | 88.106            |                        |               | 139(4)                    |                                             | 1.456417                                     | s H <sub>2</sub> O, EtOH,                     |
|                | L (Viriyloxy)outarior                                    | ether                                                                          | 0411802                                                                         | 701 10 7               | 00.100            |                        |               | 100(1)                    | 0.0021                                      | 1.1001                                       | eth, bz; i lig                                |
| 10819          | Vinyl propanoate                                         | Vinyl propionate                                                               | $C_5H_8O_2$                                                                     | 105-38-4               | 100.117           |                        |               | 94.8(0.2)                 |                                             |                                              |                                               |
| 10820          | 2-Vinylpyridine                                          |                                                                                | $C_7H_7N$                                                                       | 100-69-6               | 105.138           |                        |               | 159.5                     | 0.998320                                    | 1.549520                                     | sl H <sub>2</sub> O; vs EtOH,                 |
| 10821          | 3-Vinylpyridine                                          |                                                                                | C <sub>7</sub> H <sub>7</sub> N                                                 | 1121-55-7              | 105.138           |                        |               | 162                       | 0.987920                                    | 1.553020                                     | eth, ace, chl<br>sl H <sub>2</sub> O; s EtOH, |
| 10021          | 3-viiiyipyiiuiile                                        |                                                                                | 0 <sub>7</sub> 11 <sub>7</sub> 11                                               | 1121-33-7              | 105.150           |                        |               | 102                       | 0.3073                                      | 1.5550                                       | eth                                           |
| 10822          | 4-Vinylpyridine                                          |                                                                                | C <sub>7</sub> H <sub>7</sub> N                                                 | 100-43-6               | 105.138           | red to dk-br           |               | 121 <sup>150</sup>        | 0.987920                                    | 1.544920                                     | s H <sub>2</sub> O, EtOH,                     |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | chl; sl eth                                   |
| 10823          | 1-Vinyl-2-pyrrolidinone                                  |                                                                                | C <sub>6</sub> H <sub>9</sub> NO                                                | 88-12-0                | 111.141           |                        | 13.5          | 193400                    | 1.0420                                      |                                              |                                               |
| 10824<br>10825 | Vinylsilane<br>Vinyl sulfoxide                           | Divinyl sulfoxide                                                              | C₂H <sub>6</sub> Si<br>C₄H <sub>6</sub> OS                                      | 7291-09-0<br>1115-15-7 | 58.155<br>102.155 | col gas                | -171.6        | -22.8<br>86 <sup>18</sup> |                                             |                                              |                                               |
| 10826          | Vinyltriacetoxysilane                                    | Vinylsilanetriol, triacetate                                                   | C <sub>8</sub> H <sub>12</sub> O <sub>6</sub> Si                                | 4130-08-9              | 232.263           | ш                      |               | 11510                     | 1.16920                                     | 1.422620                                     |                                               |
| 10827          | Vinyltriethoxysilane                                     | viriyionariotrioi, triadotato                                                  | C <sub>8</sub> H <sub>18</sub> O <sub>3</sub> Si                                | 78-08-0                | 190.313           |                        |               | 160.0(0.8)                | 0.90120                                     | 1.396025                                     | s chl                                         |
| 10828          | Vinyltrimethylsilane                                     |                                                                                | C <sub>5</sub> H <sub>12</sub> Si                                               | 754-05-2               | 100.235           |                        |               | 55.3(0.2)                 | 0.6520                                      | 1.391420                                     |                                               |
| 10829          | Violaxanthin                                             |                                                                                | C <sub>40</sub> H <sub>56</sub> O <sub>4</sub>                                  | 126-29-4               | 600.871           | red pr                 | 208           |                           |                                             |                                              | s EtOH, eth,                                  |
|                |                                                          |                                                                                |                                                                                 |                        |                   | (MeOH,                 |               |                           |                                             |                                              | CS <sub>2</sub> ; i peth                      |
| 10830          | Viquidil                                                 |                                                                                | C <sub>20</sub> H <sub>24</sub> N <sub>2</sub> O <sub>2</sub>                   | 84-55-9                | 324.417           | al-eth)<br>red ye amor | 60            |                           |                                             |                                              | vs eth, EtOH,                                 |
| 10030          | viquidii                                                 |                                                                                | 020112411202                                                                    | 04-33-3                | 324.417           | reu ye amoi            | 00            |                           |                                             |                                              | chl                                           |
| 10831          | Visnadine                                                |                                                                                | C <sub>21</sub> H <sub>24</sub> O <sub>7</sub>                                  | 477-32-7               | 388.412           | nd                     | 85.5          |                           |                                             |                                              | i H <sub>2</sub> 0; s EtOH,                   |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | eth                                           |
| 10832          | Visnagin                                                 | 4-Methoxy-7-methyl-5 <i>H</i> -<br>furo[3,2- <i>g</i> ][1]benzopyran-5-<br>one | $C_{13}H_{10}O_4$                                                               | 82-57-5                | 230.216           | nd (w,<br>MeOH)        | 144.5         |                           |                                             |                                              | sl H <sub>2</sub> O, EtOH; vs<br>chl          |
| 10833          | Vitamin B12                                              | Cyanocobalamin                                                                 | C <sub>63</sub> H <sub>88</sub> CoN <sub>14</sub> O <sub>14</sub> P             | 68-19-9                | 1355.365          |                        | >300          |                           |                                             |                                              |                                               |
| 10834          | Vitamin D2                                               | -,                                                                             | C <sub>28</sub> H <sub>44</sub> O                                               | 50-14-6                | 396.648           |                        | 116.5         | sub                       |                                             |                                              | i H <sub>2</sub> O; s EtOH,                   |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | eth, ace, chl                                 |
| 10835          | Vitamin D3                                               | 9,10-Secocholesta-5,7,10(19)-<br>trien-3-ol, (3β,5 <i>Z</i> ,7 <i>E</i> )-     | C <sub>27</sub> H <sub>44</sub> O                                               | 67-97-0                | 384.637           |                        | 84.5          |                           |                                             |                                              | $i H_2 0; s os$                               |
| 10836          | Vitamin E                                                | α-Tocopherol                                                                   | C <sub>29</sub> H <sub>50</sub> O <sub>2</sub>                                  | 59-02-9                | 430.706           | pale ye oil            | 3.0           | 2100.1                    | 0.95025                                     | 1.504525                                     | i H <sub>2</sub> 0; s EtOH,                   |
|                |                                                          |                                                                                |                                                                                 |                        |                   |                        |               |                           |                                             |                                              | eth, ace, chl                                 |

(+) Camptothecin binds irreversibly to the DNA-topoisomerase ( complex, inhibiting the reassociation of DNA after cleavage by opposomerase I and traps the enzyme in a covalent linkage with DNA. The enzyme complex is ubiquinated and destroyed by the 265 massome thus depleting cellular topoisomerase I

os isomer selection in

chloroform/methanol (41) (4 mg/mt)

Danger H301 store at 2-8°C

| 1-100MG | glass btl | 100 mg | 80.00  |
|---------|-----------|--------|--------|
| 1-250MG | glass bri | 250 mg | 175.00 |
| 1-1G    | glass btl | 19     | 477.00 |

m Canada 8007-47-41

> 0.99 g/mL, 25 °C 1 522

#### Mounting medium for microscopy

serada Balsam is a natural mounting medium obtained from balsam fir trees. The optical properties are nearly identical with those of glass. Specimens must be dehydrated. Permanent slides mounted with Canada Balsam have been stored for over a century.

Warning H227

| C1795-25ML  | glass btl | 25 mL  | 63.00  |
|-------------|-----------|--------|--------|
| C1795-100ML | glass btl | 100 mL | 201.50 |

#### Hal-Canavanine sulfate salt monohydrate, 98%

[206996-57-8] Beil. 4,III,1637

H-NC(=NH)NHOCH2CH2CH(NH2)CO2HH2SO4H2O FW 292.27

al +173°, c = 2 in H20

Warning H302 + H312-H332 P280

| 851839-1G | glass btl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 a | 155.50 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
|           | The second secon |     |        |

| (PINA | ED NN:2 | Manon  | 2 4 1 | 720  |
|-------|---------|--------|-------|------|
| (DUL  | 6-44-8  | MIESTA | 14.1  | 7.30 |
|       |         |        |       |      |

| mp<br>bo                                      |                                          | density                                           | 0.988 g   | /mL 25 ℃                      |
|-----------------------------------------------|------------------------------------------|---------------------------------------------------|-----------|-------------------------------|
| soluble insaponification value<br>acid number | ett<br>— 44 mg KOH/g<br>— 11-19 mg KOH/g | nanol benzene and<br>lodine value<br>ester number | petroleum | ether (hot)<br>19-44<br>40-47 |
| 432288-250G                                   | glass btl                                | 25                                                | 50 g      | 3490                          |
| 432288-1KG                                    | glass btl                                |                                                   | 1 kg      | 88.40                         |

(A-caPhos)<sub>2</sub>PdCl<sub>2</sub>, see Bls((dicyclohexyl)(4-dimethylaminophenyl)phosphine) palladium(II) chloride Page 313

Capric acid, see Decanoic acid Page 838

Capric anhydride, see Decanoic anhydride Page 838

Caproic acid, see Hexanoic acid Page 1435

#### t-Caprolactam, 99%

Aza-2-cycloheptanone; 2-Oxohexamethyleneimine [105-60-2] Merck 14,1761, Beil 21,V,6,444; Fieser 9,316 CH11NO FW 113.16



| _  | - 68        | to 71 °C vp | <0.01 mmHa (20 °C) |
|----|-------------|-------------|--------------------|
| 00 |             | 0 mmHg ait  | (0.01 mmng (20 C)  |
| 1  | 100 130 011 | amining air | 707 %              |

Warning H302 + H332-H313-H315-H317-H319-H335 P261-P305 +

| C2204-5G   | 30        |       |       |
|------------|-----------|-------|-------|
| C2204-250G | glass btl | 5 g   | 19.40 |
| C2204-1KG  | poly btl  | 250 g | 22.40 |
| ING        | paly btl  | 1 km  | 21.00 |

#### y-Caprolactone, 98%

y-Ethyl-y-butyrolactone

[695-06-7] Bell 17,238 C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> FW 11414 H<sub>2</sub>C.



bp \_\_\_\_\_ 219 °C m<sup>2</sup> density \_\_\_\_\_\_ 1023 g/mL 25 °C

Warning H316-H319 P305 + P351 + P338

303836-25G 25 g

#### E-Caprolactone, 97%

6-Caprolactone monomer; 2-Oxepanone; 6-Hexanolactone [502-44-3] Beil 17,V,9,34 C<sub>6</sub>H<sub>10</sub>O<sub>2</sub> FW 114.14



25.00

\_ 97-98 °C/15 mmHg vd \_\_\_ bo 39 (us air) \_\_ 1.03 g/mL, 25 °C vp \_\_\_ density 0.01 mmHg (20 °C) 1.463

Danger H303-H315-H318-H335 P261-P280-P305 + P351 +

| 704067-100G | glass btl | 100 g | 23.40 |
|-------------|-----------|-------|-------|
| 704067-500G | glass btl | 500 g | 76.20 |

6-Caprolactone polymer, see Polycaprolactone Page 2095 Caproyl chloride, see Hexanoyl chloride Page 1436 Capryl alcohol, see 1-Octanol Page 1945 Caprylamine, see Octylamine Page 1948 Caprylic acid, see Octangic acid Page 1945 sec-Caprylic alcohol, see 2-Octanol Page 1946 Caprylolactam, see 2-Azacyclononanone Page 208 Capryloyl chloride, see Octanoyl chloride Page 1947 Capryloyl-2,4,6,8-<sup>13</sup>C<sub>4</sub> coenzyme A, lithium salt, see Octanoyl-2,4,6,8-<sup>13</sup>C<sub>4</sub>

Coenzyme A, lithium salt Page 1947

#### CAPS, ≥98.0%

3-(Cyclohexylamino)-1-propanesulfonic acid [1135-40-6] Merck 14,1767 C<sub>6</sub>H<sub>11</sub>NH(CH<sub>2</sub>)<sub>3</sub>SO<sub>3</sub>H FW 221.32 10.4 useful pH range 97 - 111 mp \_ >300 ℃ pKa (25 ℃) 104 pH range 97 - 111



| C2032-1KG               | poly drum  | 1 kg      | 413.00 |
|-------------------------|------------|-----------|--------|
| C2632-250G<br>C2632-1KG | poly btl   | 250 g     | 136.00 |
| C2632-6X100G            | Torrespond | 6 × 100 g | 258.00 |
| C2632-100G              | poly btl   | 100 g     | 55.20  |
|                         |            | 25 g      | 21.30  |
| C2632-25G               | poly btl   | 25        | 0      |

#### Capsaicin

8-Methyl-N-vanillyl-trans-6-nonenamide

[404-86-4] Merck 14 1768; Beil. 13.IV 2588

(CH<sub>3</sub>)<sub>2</sub>CHCH=CH(CH<sub>2</sub>)<sub>4</sub>CONHCH<sub>2</sub>C<sub>6</sub>H<sub>3</sub>-4-(OH)-3-(OCH<sub>3</sub>) FW 305.41

Prototype vanilloid receptor agonist; neurotoxin.

Active component of cayenne pepper

Danger H301 + H311-H315-H317-H318-H334-H335 P261-P280-P301 + P310-P305 + P351 + P338-P342 +

#### natural composition

capsaicin 65%

dihydrocapsaicin 35%

| 360376-250MG | glass btl | 250 mg | 45.00  |
|--------------|-----------|--------|--------|
| 360376-1G    | glass btl | 1.9    | 136.00 |

#### 1 kg 31.00 ▶ from Capsicum sp., ≥50% (HPLC)

| dihydrocapsaicn | 14        |        | -35%   |
|-----------------|-----------|--------|--------|
| store at: 2-8°C |           |        |        |
| 21750-100MG-F   | glass btl | 100 mg | 34 00  |
| 21750-1G-F      | glass btl | 1 g    | 175.50 |
| 21750-5G-F      | glass btl | 5 g    | 627.00 |

MEW

55.10

181.00

140.00

1 9

## Hydrogen [4-di-tert-butylphosphino-2,3,5,6-tetra-fluorophenyl]hydrobis(2,3,4,5,6-pentafluorophenyl) borate, 97%

Frustrated phosphonium borate 1 FW 640.20 [952208-49-0]  $H^+$  [(((CH<sub>3</sub>)<sup>3</sup>C)<sub>2</sub>PC<sub>6</sub>F<sub>4</sub>)B(H)(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]

222 to 227 °C

Frustrated phosphonium borate for metal-free catalytic hydroge nation of imines. Activates dihydrogen under mild conditions. Lit. cited: 1. Chase, P. A. et al., Angew. Chem. Int. Ed. Engl. 46, 8050 (2007) 2. Welch, G. C. et al., Science 314, 1124 (2006)

| 1              | Warning H315-H |           | P261-P305 + P351 + P330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BRY CONTRACTOR | 25510 Cha.     | glass btl | 250 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 703087-        | ZOUNIG         | Miggs rve | The state of the s |  |

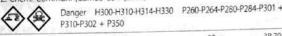
glass btl

#### Hydrogen fluoride pyridine

703087-1G

HF-Pyridine; Pyridine hydrofluoride [62778-11-4] Merck 14,6821; Fieser 9,399; 5,538; 12,419; 16,286; 6,473

C<sub>5</sub>H<sub>5</sub>N · (HF)<sub>x</sub> FW 20.01 1.1 g/mL, 20 °C density

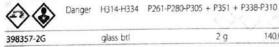

## ▶ pyridine: ~30%, hydrogen fluoride: ~70%

Used together with hypervalent iodine(III) reagents for ipsofluorination of para-substituted phenols providing cyclohexadienones.<sup>1</sup> Employed with Selectfluor® (Catalog No. 439479) for geminal fluorination of 2,2-diaryl-1,3-dithiolanes.<sup>2</sup>

May contain or form low levels of calcium fluoride during storage. Presence of this does not impact the specification values.

Lit. cited: 1. Tetrahedron 60, 6629 (2004)

2. Chem. Commun. (Camb.) 654 (2005)




| 184225-25G  | poly btl | 25 g  | 38.70 |
|-------------|----------|-------|-------|
| 184225-100G | poly btl | 100 g | 71,30 |

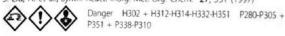
# Hydrogen hexabromoplatinate(IV) hydrate, 99.9% trace metals

Platinic bromide; Bromoplatinic acid [207386-85-4] H<sub>2</sub>PtBr<sub>6</sub>:xH<sub>2</sub>O FW 676.52 (Anh) powder and chunks composition

Pt 24-26%



#### Hydrogen hexachloroiridate(IV) hydrate


[110802-84-1] Fieser 5,119; 3,47; 1,131; 2,67; 4,93 H<sub>2</sub>Cl<sub>6</sub>lr · xH<sub>2</sub>O FW 406.95 (Anh)

#### **Features and Benefits**

Catalyzes the electrochemical synthesis of polyaniline on the surface of non-noble metal electrodes. Utilized in the formation of iridiumsubstituted Dawson-2 and Keggin-type polyoxometallates by refilling the vacant site of the lacunary precursors.

mp 65 °C density. .. 1.02 g/mL, 25 °C

Lit. cited: 1. Abalyaeva, V.V.; Efimov, O.N., Polym. Adv. Technol. 8, 517 (1997) 2. Liu, H. et al., Transition Met. Chem. (London) 22, 321 (1997) 3. Liu, H. et al., Synth. React. Inorg. Met.-Org. Chem. 27, 551 (1997)



#### ▶ 99.98% trace metals basis

| 455962-1G | glass btl | 1 g | 179.50 |
|-----------|-----------|-----|--------|
| powder    |           |     |        |
| 208973-1G | glass btl | 1 g | 151.50 |
| 208973-5G | glass btl | Sa  | 466.00 |

# Hydrogen hexahydroxyplatinate(IV), 99,9% trace metals is

[51850-20-5] H<sub>2</sub>Pt(OH)<sub>6</sub> FW 299.14 powder and chunks

and Chune Warning H315-H319-H332-H335 P261-P305 + P351 + P351 glass btl 334472-500MG 500 mg glass btl 334472-2.5G

Mydrogen ionophore I, see Tridodecylamine Page 2483

## Hydrogen ionophore III, ≥99.0% (NT)

N.N-Dioctadecylmethylamine; Proton ionophore [4088-22-6] Beil. 4,III,435 [CH<sub>3</sub>(CH<sub>2</sub>)<sub>17</sub>]<sub>2</sub>NCH<sub>3</sub> FW 53601

#### Selectophore<sup>®</sup>

Visit our Sensor Applications portal to learn more. Visit our Sensor Approved

Neutral ionophore for proton-sensitive solvent polymeric membrased in biological studies!

Lit. cited: 1. H.L. Wu, R. Yu, Talanta 34, 577 (1987) Warning H315-H319-H335 P261-P305 + P351 + P336

glass btl 95298-50MG 50 mg

#### Hydrogen peroxide solution

[7722-84-1] Merck 14,4798; Fieser 6,286; 8,247; 10,201; 13,145; 5373 7,174; 14,176; 4,253; 15,166; 1,457; 9,241; 12,242; 2,216; 3,154,1617; 17,146 H<sub>2</sub>O<sub>2</sub> FW 34.01

#### contains potassium stannate as inhibitor, 30-32 wt. % in water semiconductor grade, 99.999% trace metals basis

contains stabilizer

1.11 g/mL 27 density 1 (5 a) vd H271-H302-H314-H333-H402 P280-P305+ Danger P351 + P338 田田

316989-3.71 contains inhibitor, 30 wt. % in H2O, ACS reagent

## 29.0-32.0% (ACS specification)

contains stabilizer

| Titr. acid                 | STEEL STATE  |                                         | _ 201000 med |
|----------------------------|--------------|-----------------------------------------|--------------|
| APHA color                 | ≤10          | phosphate (PO43)                        | 57 km        |
| evapn. residue             |              | sulfate (SO <sub>4</sub> <sup>2</sup> ) | 500          |
| vd                         | 1 (vs air)   |                                         | s05 pp       |
|                            |              | heavy metals (as Pb) -                  | s! pp        |
| chloride (CI')             |              |                                         | _ 55 ppr     |
| nitrate (NO <sub>3</sub> ) | ≤2 ppm       | Nry .                                   |              |
| AAA D                      | anger H271-h | H302-H314-H333-H402                     | P2804'50-    |

|              | P351 + P338 | 145 morted all this |     |
|--------------|-------------|---------------------|-----|
| 216763-100ML | poly btl    | 100 mL              | 400 |
| 216763-500ML | poly btl    | 500 mL              | 200 |
| 216763-4L    | poly btl    | 41                  | 390 |

#### ▶ 50 wt. % in H<sub>2</sub>O, stabilized

Contains proprietary inorganic tin-based stabilizer

1.197 girl 30 C Danger H271-H302-H314-H333-H402 P220-P36 P280-P305 + P351 + P338-P310 SUM 500 mi 516813-500MI poly btl 516813-4L poly btl

#### ▶ 35 wt. % in H<sub>2</sub>O contains stabilizer

| mp           | 40 °C density -           |       |
|--------------|---------------------------|-------|
| bp           | 126 °C n <sup>20</sup> −− |       |
| 349887-500ML | poly btl                  | 500 m |
| 349887-4L    | poly btl                  |       |

B

451.50

NEW

623.00

\_ 0.896 a/mL, 25 °C

800 ml

800 ml

## Lithium bis(trimethylsilyl)amide, 97%

Haxamethyldisilazane lithium salt

(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NLi Fieser 5,393; 12,280; 7,197; 4,296; 14,194 PW 167.33

0.860 g/mL 25 °C

used to catalyze the addition of phosphine P-H bonds to carbodiimides leading to phosphaguanidines. Also used in a novel hree-step synthesis of disubstituted 1,2,5-thiadiazoles.<sup>2</sup>

Lit. cited: 1. Chem. Commun. (Camb.) 3812 (2006)

tetrahedron Lett. 47, 8285 (2006)



Danger H228-H314 P210-P280-P305 + P351 + P338-P310

| 324620-10G  | glass btl | 10 g  | 25.10  |
|-------------|-----------|-------|--------|
| 174620-50G  | glass btl | 50 g  | 70.90  |
| 124620-250G | glass btl | 250 g | 255.00 |

## Uthium bis(trimethylsilyl)amide solution

Heamethyldisilazane lithium salt

[4339-32-1] Fieser 4,296; 12,280; 5,393; 14,194; 7,197 [(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NLi FW 167.33

#### 1 M in tert-butyl methyl ether

| 577014-100ML | Sure/Seal™ | 100 mL | 134.50 |
|--------------|------------|--------|--------|
| 577014-800ML | Sure/Seal™ | 800 mL | 768.00 |

#### ▶ 1.0 M in hexanes

Significantly accelerated the polymerization of pheneylacetylene in conjunction with rhodium (I) catalysis.

55-56 °C 0.707 g/mL, 25 °C

#### Lit. cited: 1. Macromolecules 39, 5347 (2006)



Danger H225-H304-H314-H336-H361-H371-H401 P210-P261-P273-P280-P301 + P310-P305 + P351 + P338

| 224367-100ML | Sure/Seal™ | 100 mL | 58.60  |
|--------------|------------|--------|--------|
| 224367-800ML | Sure/Seal™ | 800 mL | 325.00 |
| 224367-8L    | Kilo-Lab*  | 8 L    | 734,00 |

#### 1.0 M in THF

Significantly accelerated the polymerization of phenylacetylene in conjunction with rhodium(I) catalysis.1

0.891 a/mL 25 °C 5347 (2006)

| Lit. cited: | <ol> <li>Macron</li> </ol> | nolecules | 39, |
|-------------|----------------------------|-----------|-----|
| AA          |                            | Danger    | H2  |

225-H303-H314-H371 P210-P261-P280-P305 + P351 + P338-P310

| 225770-4X10ML | Sure/Seal™ | 4 × 10 mL | 40.00    |
|---------------|------------|-----------|----------|
| 225770-100ML  | Sure/Seal™ | 100 mL    | 42.10    |
| 225770-800ML  | Sure/Seal™ | 800 mL    | 203.00   |
| 225770-1L     | Sure/Seal™ | 1 L       | 239.50   |
| 225770-8L     | Kilo-Lab*  | 8 L       | 961.00   |
| 225770-18L    | Kilo-Lab*  | 18 L      | 1,835.00 |
| 225770-100L   | steel drum | 100 L     | Inquire  |
| 225770-200L   | steel drum | 200 L     | Inquire  |
| No.           |            |           |          |

#### ▶ 1 M in toluene

0.860 g/mL, 25 °C

Danger H225-H304-H314-H336-H361d-H373 P210-P261-P280-P301 + P310-P305 + P351 + P338-P310

| 577928-100ML | Sure/Seal™ | 100 mL | 34,70  |
|--------------|------------|--------|--------|
| 577928-800ML | Sure/Seal™ | 800 mL | 209.00 |

#### Lithium borodeuteride, ≥95%

Lithium borohydride-d4

[15246-28-3] LiBD<sub>4</sub> FW 25.81



Danger H260-H301 + H311-H314-H331 P223-P231 + P232-P261-P280-P370 + P378-P422

| ~ ~ ~        | F232-F201-F200-F370 + F370 F322 |        |        |
|--------------|---------------------------------|--------|--------|
| 685917-500MG | glass btl                       | 500 mg | 365.00 |

#### Lithium borohydride

[16949-15-8] Merck 14,5525; Fieser 12,276; 1,603; 4,296; 14,191; 11,293; 15,186 LiBH<sub>4</sub> FW 21.78

275 °C (dec.) mp 0.666 g/mL, 25 °C density



Danger P223-P231 + P232-P261-P280-P370 + P378-

#### >95.0%

Review<sup>1</sup>; Smooth reduction of esters<sup>2,3</sup>; Reduction of acids and other functional groups with LiBH<sub>4</sub>/Me<sub>3</sub>SiCl<sup>4</sup>

Lit. cited: 1. H.C. Brown, S. Krishnamurthy, Tetrahedron 35, 567 (1979) 2. H.C. Brown, S. Narasimhan, J. Org. Chem. 47, 1604 (1982)

3. H.C. Brown et al., J. Org. Chem. 47, 4702 (1982)

4. A. Giannis, K. Sandhoff, Angew. Chem. 101, 220 (1989)

H260-H302-H311-H314-H330

| 62460-5G-F  | glass btl | 5 g  | 79.70  |
|-------------|-----------|------|--------|
| 62460-25G-F |           | 25 g | 274.50 |

#### >90%

H260-H301 + H311-H314-H331

| glass btl | 1 g      | 24.30         |
|-----------|----------|---------------|
| poly btl  | 10 g     | 121.50        |
| poly btl  | 50 g     | 395.50        |
|           | poly btl | poly btl 10 g |

#### ▶ hydrogen-storage grade, ≥90%

Hydrogen content, XRD plots and metal purity data are available upon request

H260-H302-H311-H314-H330

| 686026-10G | glass btl | 10 g | 141,00 |
|------------|-----------|------|--------|
|            |           |      |        |

#### Lithium borohydride solution

[16949-15-8] Merck 14,5525; Fieser 1,603; 4,296; 14,191; 12,276; 15,186; 11,293 LiBH<sub>4</sub> FW 21.78 Danger

#### ▶ 2.0 M in THF

230200-800ML

density U225 U260 U202 1 U212 U214 U227 U235 1 U236

|               | P210-P223-P231 + P232-P261-P370 + P378-P422 |           |       |
|---------------|---------------------------------------------|-----------|-------|
| 230200-4X10ML | Sure/Seal™                                  | 4 × 10 mL | 40.00 |
| 230200-100ML  | Sure/Seal™                                  | 100 mL    | 88.80 |

#### ▶ 0.5 M in diethyl ether

Material may form precipitate on standing, which does not affect its use

0.719 g/mL, 25 °C

| <b>(1)</b>   | H224-H302 + H332-H315-H319-H336<br>P338 | P210-P261-P30 | 3     |
|--------------|-----------------------------------------|---------------|-------|
| 702714-100ML | Sure/Seal™                              | 100 mL        | 90.00 |

Sure/Seal™

Sure/Seal™ ☑ Lithium borohydride-d₄, see Lithium borodeuteride Page 1613

#### Lithium bromide

702714-800ML

[7550-35-8] Merck 14,5526; Fieser 13,332; 4,297; 2,245; 1,604 FW 86.85

mp 550 °C



Warning

## ▶ anhydrous, beads, -10 mesh, 99.999% trace metals basis

| H302       |        |      |        |
|------------|--------|------|--------|
| 429465-5G  | ampule | 5 g  | 52.90  |
| 429465-25G | ampule | 25 g | 170.00 |

## ▶ anhydrous, beads, -10 mesh, ≥99.9% trace metals basis

| 449873-25G  | ampule | 25 g  | 82.60  |
|-------------|--------|-------|--------|
| 449873-100G | ampule | 100 g | 268.00 |

#### PHYSICAL CONSTANTS OF ORGANIC COMPOUNDS

The basic physical constants and structure diagrams for about 10,900 organic compounds are presented in this table. An effort has been made to include the compounds most frequently encountered in the laboratory, the workplace, and the environment. Particular emphasis has been given to substances that are considered environmental or human health hazards. In making the selection of compounds for the table, added weight was assigned to the appearance of a compound in various lists or reference sources such as:

- Laboratory reagent lists, e.g., the ACS Reagent Chemicals volume (Ref. 1)
- The DIPPR list of industrially important compounds (Ref. 2) and the (much larger) TSCA Inventory of chemicals used in commerce.
- The Hazardous Substance Data Bank (Ref. 3)
- The UNEP list of Persistent Organic Pollutants (Ref. 4)
- Chemicals on Reporting Rules (CORR), a database of about 7500 regulated compounds prepared by the Environmental Protection Agency (Ref. 5)
- The EPA Integrated Risk Information System (IRIS), a database of human health effects of exposure to chemicals in the environment (Ref. 6)
- Compendia of chemicals of biochemical or medical importance, such as The Merck Index (Ref. 10)
- Specialized tables in this *Handbook*

It should be noted that the above lists vary widely in their choice of chemical names, and even in the use of Chemical Abstracts Registry Numbers. To the extent possible, we have attempted to systematize the names and registry numbers for this table.

Clearly, criteria of this type are somewhat subjective, and compounds considered important by some users have undoubtedly been omitted. Suggestions for additional compounds or other improvements are welcomed.

The data in the table have been derived from many sources, including both the primary literature and evaluated compilations. The Handbook of Data on Organic Compounds, Third Edition (Ref. 7) and the Combined Chemical Dictionary (Ref. 8) were important sources. Other useful sources of physical property data on organic compounds are listed in Refs. 9-19. The values in the table for the normal boiling point and the melting point that are accompanied with uncertainties (in parentheses) have been critically evaluated using the NIST ThermoData Engine (TDE, Ref. 20), designed to implement the dynamic data evaluation concept (Refs. 21-24). This concept requires large electronic databases capable of storing essentially all relevant experimental data known to date with detailed descriptions of metadata and uncertainties. The combination of these electronic databases with expert-system software, designed to automatically generate recommended property values based on available experimental and predicted data, leads to the ability to produce critically evaluated data dynamically or "to order." The uncertainties listed are combined expanded uncertainties (level of confidence, approximately 95 %) representing the most comprehensive measure of the overall data reliability (Refs. 25-28).

The table is arranged alphabetically by substance name, which generally is either an IUPAC systematic name or, in the case of pesticides, pharmaceuticals, and other complex compounds, a simple trivial name. Names in ubiquitous use, such as acetic

acid and formaldehyde, are adopted rather than their systematic equivalents. Synonyms are given in the column following the primary name, and structure diagrams are given on the page facing the data listing. The explanation of the data columns follows:

No.: An identification number used in the indexes.

Name: Primary name of the substance

**Synonym:** A synonym in common use. When the primary name is non-systematic, a systematic name may appear here

**Mol. Form.:** The molecular formula written in the Hill convention.

**CAS RN.:** The Chemical Abstracts Service Registry Number for the compound.

**Mol. Wt:** Molecular weight (relative molar mass) as calculated with the 2001 IUPAC Standard Atomic Weights.

**Physical Form:** A notation of the physical phase, color, crystal type, or other features of the compound at ambient temperature. Abbreviations are given below.

**mp:** Normal melting point in °C. A value is sometimes followed by "dec", indicating decomposition is observed at the stated temperature (so that it is probably not a true melting point). The notation "tp" indicates a triple point, where solid, liquid, and gas are in equilibrium. A number in parentheses following the melting point value is the combined expanded uncertainty (see above).

bp: Normal boiling point in °C, if it is available. This is the temperature at which the liquid phase is in equilibrium with the vapor at a pressure of 760 mmHg (101.325 kPa). A number in parentheses following the boiling point value is the combined expanded uncertainty (see above). A notation "sp" following the value indicates a sublimation point, where the vapor pressure of the solid phase reaches 760 mmHg. When a notation such as "dec" (decomposes) or "exp" (explodes) follows the value, the temperature may not be a true boiling point. A simply entry "sub" indicates the solid has a significant sublimation pressure at ambient temperatures. When the normal boiling point is not available, a boiling point at reduced pressure may be listed with a superscript indicating the pressure in mmHg.

**den:** Density (mass per unit volume) in g/cm³. The temperature in °C is indicated by a superscript. Values refer to the liquid or solid phase, and all values are true densities, not specific gravities. The number of decimal places gives a rough estimate of the accuracy of the value.

 $n_{\rm D}$ : Refractive index, at the temperature in °C indicated by the superscript. Unless otherwise indicated, all values refer to a wavelength of 589 nm (sodium D line). Values are given only for liquids and solids.

**Solubility:** Qualitative indication of solubility in common solvents. Abbreviations are:

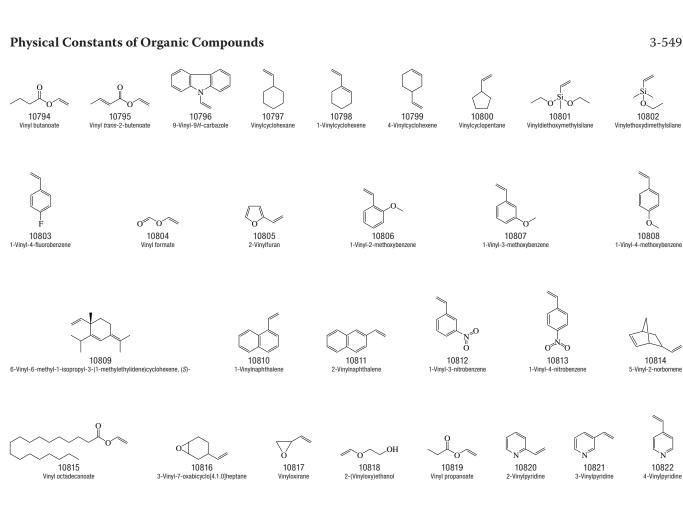
i insoluble sl slightly soluble s soluble vs very soluble msc miscible dec decomposes

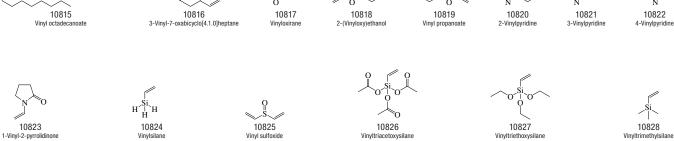
Abbreviations for solvents are given below.

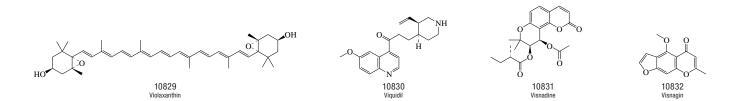
In order to facilitate the location of compounds in the table, an index to synonyms follows the main table. Indexes to Molecular Formulas and CAS Registry Numbers are available in the electronic versions of the *Handbook* or as pdf files by request via e-mail (fiona.macdonald@taylorandfrancis.com).

The assistance of members of the Thermodynamics Research Center (TRC) of the National Institute of Standards and Technology (Vladimir Diky, Rob Chirico, Andrei Kazakov) and especially Chris Muzny and Michael Frenkel in the determination of values of the normal-boiling-point and melting-point temperatures with uncertainties is greatly appreciated. The editors of the Handbook are much indebted to Chris Muzny who spent countless hours in producing these critically evaluated results. The assistance of Fiona Macdonald in checking names and formulas is gratefully acknowledged, as well as the efforts of Janice Shackleton, Trupti Desai, Nazila Kamaly, Matt Griffiths, and Lawrence Braschi in preparing the structure diagrams.

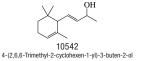
### List of Abbreviations


| Ac        | acetyl               | flr      | fluorescent           | pow      | powder               |
|-----------|----------------------|----------|-----------------------|----------|----------------------|
| $Ac_2O$   | acetic anhydride     | fum      | fumes, fuming         | Pr       | propyl               |
| AcOEt     | ethyl acetate        | gl       | glacial               | PrOH     | 1-propanol           |
| ac        | acid                 | gr       | gray                  | pr       | prisms               |
| ace       | acetone              | gran     | granular              | purp     | purple               |
| al        | alcohol (ethanol)    | grn      | green                 | ру       | pyridine             |
| alk       | alkali               | hex      | hexagonal             | pym      | pyramids, pyramidal  |
| amor      | amorphous            | HOAc     | acetic acid           | reac     | reacts               |
| anh       | anhydrous            | hp       | heptane               | rhom     | rhombic              |
| aq        | aqueous              | hx       | hexane                | s        | soluble              |
| bipym     | bipyramidal          | hyd      | hydrate               | sat      | saturated            |
| bl        | blue                 | hyg      | hygroscopic           | sc       | scales               |
| blk       | black                | i        | insoluble             | sl       | slightly soluble     |
| bp        | boiling point        | i-       | iso-                  | soln     | solution             |
| br        | brown                | iso      | isooctane             | sp       | sublimation point    |
| bt        | bright               | lf       | leaves                | stab     | stable               |
| Bu        | butyl                | lig      | ligroin               | sub      | sublimes             |
| BuOH      | 1-butanol            | liq      | liquid                | sulf     | sulfuric acid        |
| bz        | benzene              | lo       | long                  | syr      | syrup                |
| chl       | chloroform           | mcl      | monoclinic            | tab      | tablets              |
| col       | colorless            | Me       | methyl                | tcl      | triclinic            |
| con, conc | concentrated         | MeCN     | acetonitrile          | tetr     | tetragonal           |
| cry       | crystals             | MeOH     | methanol              | tfa      | trifluoroacetic acid |
| ctc       | carbon tetrachloride | misc     | miscible              | thf, THF | tetrahydrofuran      |
| cy, cyhex | cyclohexane          | mp       | melting point         | tol      | toluene              |
| dec       | decomposes           | n        | refractive index      | tp       | triple point         |
| den       | density              | nd       | needles               | trg      | trigonal             |
| dil       | dilute               | oct      | octahedra, octahedral | unstab   | unstable             |
| diox      | dioxane              | oran     | orange                | vap      | vapor                |
| dk        | dark                 | orth     | orthorhombic          | viol     | violet               |
| DMF       | dimethylformamide    | os       | organic solvents      | visc     | viscous              |
| DMSO      | dimethyl sulfoxide   | pa       | pale                  | vol      | volatile             |
| efflor    | efflorescent         | peth     | petroleum ether       | VS       | very soluble         |
| Et        | ethyl                | Ph       | phenyl                | W        | water                |
| EtOH      | ethanol              | PhCl     | chlorobenzene         | wh       | white                |
| eth       | diethyl ether        | $PhNH_2$ | aniline               | xyl      | xylene               |
| exp       | explodes             | $PhNO_2$ | nitrobenzene          | ye       | yellow               |
| fl        | flakes               | pl       | plates                |          |                      |
|           |                      |          |                       |          |                      |


### **References**


- American Chemical Society, Reagent Chemicals, Tenth Edition, Oxford University Press, New York, 2005.
- Design Institute for Physical Properties, American Institute of Chemical Engineers, <a href="http://www.aiche.org/dippr/">http://www.aiche.org/dippr/</a>.
- 3. National Library of Medicine, Hazardous Substances Data Bank, <a href="http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB">http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB</a>.
- 4. United Nations Environmental Program, Persistent Organic Pollutants, <a href="http://www.chem.unep.ch/pops/">http://www.chem.unep.ch/pops/</a>>.
- 5. Environmental Protection Agency, Chemicals on Reporting Rules, <a href="http://www.epa.gov/opptintr/CORR">http://www.epa.gov/opptintr/CORR</a>>.
- Environmental Protection Agency, Integrated Risk Information System, <a href="http://www.epa.gov/iris/index.html">http://www.epa.gov/iris/index.html</a>>.
- Lide, D. R., and Milne, G. W. A., Editors, Handbook of Data on Organic Compounds, Third Edition, CRC Press, Boca Raton, FL, 1993.
- 8. Combined Chemical Dictionary, <a href="http://ccd.chemnetbase.com/">http://ccd.chemnetbase.com/>.
- Linstrom, P. J., and Mallard, W. G., Editors, NIST Chemistry WebBook, NIST Standard Reference Database No. 69, February 2010, National Institute of Standards and Technology, Gaithersburg, MD 20899, <a href="http://webbook.nist.gov">http://webbook.nist.gov</a>>.
- Thermodynamic Research Center, National Institute of Standards and Technology, TRC Thermodynamic Tables, <a href="https://trc.nist.gov">http://trc.nist.gov</a>>.
- O'Neil, M. J., Editor, The Merck Index, Fourteenth Edition, Merck & Co., Whitehouse Station, NJ, 2006.
- 12. Stevenson, R. M., and Malanowski, S., Handbook of the Thermodynamics of Organic Compounds, Elsevier, New York, 1987.
- Riddick, J. A., Bunger, W. B., and Sakano, T. K., Organic Solvents, Fourth Edition, John Wiley & Sons, New York, 1986.
- 14. ChemSpider, <a href="http://www.chemspider.com/">http://www.chemspider.com/>.
- 15. Crossfire Beilstein, <a href="http://accelrys.com/products/">http://accelrys.com/products/</a>.
- Springer Materials, The Landolt-Börnstein Database, <a href="http://www.springermaterials.com">http://www.springermaterials.com</a>>.

- Vargaftik, N.B., Vinogradov, Y. K., and Yargin, V. S., Handbook of Physical Properties of Liquids and Gases, Third Edition, Begell House, New York, 1996.
- 18. Lide, D. R., and Kehiaian, H. V., Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, FL, 1994.
- 19. Lide, D. R., Editor, Properties of Organic Compounds, <a href="http://www.chemnetbase.com/tours/poc/intro.jsf">http://www.chemnetbase.com/tours/poc/intro.jsf</a>.
- Frenkel, M., Chirico, R. D., Diky, V. V., Kazakov, A., and Muzny, C. D., ThermoData Engine, NIST Standard Reference Database 103b, Version 5.0 (Pure Compounds, Binary Mixtures, and Chemical Reactions, TDE-SOURCE Version 5.1), National Institute of Standards and Technology, Gaithersburg, MD Boulder, CO, 2010, <a href="http://www.nist.gov/srd/nist103b.cfm">http://www.nist.gov/srd/nist103b.cfm</a>>.
- Frenkel, M., Chirico, R. D., Diky, V., Yan, X., Dong, Q., and Muzny, C., J. Chem. Inf. Model. 45, 816, 2005.
- Diky, V., Muzny, C. D., Lemmon, E. W., Chirico, R. D., and Frenkel, M., J. Chem. Inf. Model. 47, 1713, 2007.
- Diky, V., Chirico, R. D., Kazakov, A. F., Muzny, C., and Frenkel, M., J. Chem. Inf. Model. 49, 503, 2009.
- Diky, V., Chirico, R. D., Kazakov, A. F., Muzny, C., and Frenkel, M., J. Chem. Inf. Model. 49, 2883, 2009.
- Chirico, R. D., Frenkel, M., Diky, V. V., March, K. N., and Wilhoit, R. C., J. Chem. Eng. Data 48, 1344, 2003.
- 26. Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, Geneva, Switzerland, 1993.
- U. S. Guide to the Expression of Uncertainty in Measurement, ANSI/ NCSL, Z540-2-1997, ISBN 1-58464-005-7, NCSL Int., Boulder, CO, 1997.
- Taylor, B. N., and Kuyatt, C. E., Guidelines for the Evaluation and Expression of Uncertainty in NIST Measurement Results, NIST Tech. Note 1297, Natl. Inst. Stand. Technol., Gaithersburg, MD, 1994.


| No.   | Name                                                                                   | Synonym                                                                    | Mol. Form.                                                          | CAS RN    | Mol.<br>Wt. | Physical<br>Form            | mp/°C       | bp/°C              | den<br>g cm <sup>-3</sup> | n <sub>D</sub>       | Solubility                                     |
|-------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-----------|-------------|-----------------------------|-------------|--------------------|---------------------------|----------------------|------------------------------------------------|
| 10794 | Vinyl butanoate                                                                        |                                                                            | C <sub>6</sub> H <sub>10</sub> O <sub>2</sub>                       | 123-20-6  | 114.142     |                             |             | 116.7              | 0.900620                  |                      |                                                |
| 10795 | Vinyl trans-2-butenoate                                                                | Vinyl crotonate                                                            | C <sub>6</sub> H <sub>8</sub> O <sub>2</sub>                        | 3234-54-6 | 112.127     |                             |             |                    |                           |                      | s ctc                                          |
| 10796 | 9-Vinyl-9 <i>H</i> -carbazole                                                          |                                                                            | C <sub>14</sub> H <sub>11</sub> N                                   | 1484-13-5 | 193.244     | cry (al)                    | 66          |                    |                           |                      | i H <sub>2</sub> O; sI EtOH;<br>vs eth         |
| 10797 | Vinylcyclohexane                                                                       |                                                                            | C <sub>8</sub> H <sub>14</sub>                                      | 695-12-5  | 110.197     |                             |             | 127(6)             | 0.816619                  | 1.45519              | vo cui                                         |
| 10798 | 1-Vinylcyclohexene                                                                     |                                                                            | C <sub>8</sub> H <sub>12</sub>                                      | 2622-21-1 | 108.181     |                             |             | 144(7)             | 0.862315                  | 1.491520             | i H <sub>2</sub> O; s eth, bz;                 |
|       |                                                                                        |                                                                            |                                                                     |           |             |                             |             |                    |                           |                      | vs MeOH                                        |
| 10799 | 4-Vinylcyclohexene                                                                     |                                                                            | C <sub>8</sub> H <sub>12</sub>                                      | 100-40-3  | 108.181     | liq                         | -108.9      | 130(4)             | 0.829920                  | 1.463920             | i H <sub>2</sub> 0; s eth, bz,<br>peth         |
| 10800 | Vinylcyclopentane                                                                      |                                                                            | C <sub>7</sub> H <sub>12</sub>                                      | 3742-34-5 | 96.170      | liq                         | -126.4(0.2) | 99(3)              | 0.783420                  | 1.436020             |                                                |
| 10801 | Vinyldiethoxymethylsilane                                                              |                                                                            | $C_7H_{16}O_2Si$                                                    | 5507-44-8 | 160.287     |                             |             | 133                | 0.862020                  | 1.400120             |                                                |
| 10802 | Vinylethoxydimethylsilane                                                              |                                                                            | C <sub>6</sub> H <sub>14</sub> OSi                                  | 5356-83-2 | 130.260     |                             |             | 99                 | 0.79020                   | 1.398320             |                                                |
| 10803 | 1-Vinyl-4-fluorobenzene                                                                |                                                                            | C <sub>8</sub> H <sub>7</sub> F                                     | 405-99-2  | 122.140     |                             | -34.5       | 67.4 <sup>50</sup> | 1.022020                  | 1.515020             | i H <sub>2</sub> O; s EtOH,<br>eth, bz         |
| 10804 | Vinyl formate                                                                          |                                                                            | C <sub>3</sub> H <sub>4</sub> O <sub>2</sub>                        | 692-45-5  | 72.063      | visc liq                    | -78         | 42(18)             | 0.96520                   | 1.384220             |                                                |
| 10805 | 2-Vinylfuran                                                                           |                                                                            | C <sub>6</sub> H <sub>6</sub> O                                     | 1487-18-9 | 94.111      | liq                         | -94(4)      | 101(3)             | 0.944519                  |                      |                                                |
| 10806 | 1-Vinyl-2-methoxybenzene                                                               |                                                                            | C <sub>9</sub> H <sub>10</sub> O                                    | 612-15-7  | 134.174     | nd                          | 29          | 215(18)            |                           | 1.538820             | vs ace, bz, eth,<br>EtOH                       |
| 10807 | 1-Vinyl-3-methoxybenzene                                                               |                                                                            | C <sub>9</sub> H <sub>10</sub> O                                    | 626-20-0  | 134.174     |                             |             | 91 <sup>15</sup>   | 0.991920                  | 1.5586 <sup>23</sup> | i H <sub>2</sub> 0; s Et0H,<br>eth, bz         |
| 10808 | 1-Vinyl-4-methoxybenzene                                                               |                                                                            | C <sub>9</sub> H <sub>10</sub> O                                    | 637-69-4  | 134.174     |                             | 2.0         | 208(19)            | 1.000113                  | 1.564213             | i H <sub>2</sub> O; s EtOH,<br>eth, bz; sl ctc |
| 10809 | 6-Vinyl-6-methyl-1-isopropyl-<br>3-(1-methylethylidene)-<br>cyclohexene, ( <i>S</i> )- |                                                                            | C <sub>15</sub> H <sub>24</sub>                                     | 5951-67-7 | 204.352     |                             |             | 1258               | 0.878220                  | 1.513026             | vs ace, bz                                     |
| 10810 | 1-Vinylnaphthalene                                                                     |                                                                            | C <sub>12</sub> H <sub>10</sub>                                     | 826-74-4  | 154.207     |                             |             | 124 <sup>15</sup>  | 1.065620                  | 1.644 <sup>20</sup>  |                                                |
| 10811 | 2-Vinylnaphthalene                                                                     |                                                                            | C <sub>12</sub> H <sub>10</sub>                                     | 827-54-3  | 154.207     |                             | 65(2)       | 13518              |                           |                      | i H <sub>2</sub> O; s EtOH,<br>ace, bz         |
| 10812 | 1-Vinyl-3-nitrobenzene                                                                 |                                                                            | C <sub>8</sub> H <sub>7</sub> NO <sub>2</sub>                       | 586-39-0  | 149.148     |                             | -10         | 12011              | 1.155232                  | 1.5836 <sup>20</sup> | i H₂O; s EtOH,<br>eth, bz, chl,<br>lig, HOAc   |
| 10813 | 1-Vinyl-4-nitrobenzene                                                                 |                                                                            | C <sub>8</sub> H <sub>7</sub> NO <sub>2</sub>                       | 100-13-0  | 149.148     | pr (lig)                    | 29          | dec                |                           |                      | vs EtOH, eth; s<br>chl, HOAc, lig              |
| 10814 | 5-Vinyl-2-norbornene                                                                   | 5-Vinylbicyclo[2.2.1]hept-2-<br>ene                                        | C <sub>9</sub> H <sub>12</sub>                                      | 3048-64-4 | 120.191     | liq                         | -80         | 140.7(0.5)         | 0.841                     | 1.481020             | 5111, 1107 to, 11g                             |
| 10815 | Vinyl octadecanoate                                                                    | Vinyl stearate                                                             | C <sub>20</sub> H <sub>38</sub> O <sub>2</sub>                      | 111-63-7  | 310.515     |                             | 29          | 167 <sup>2</sup>   | 0.851720                  |                      | sl chl                                         |
| 10816 | 3-Vinyl-7-oxabicyclo[4.1.0]-<br>heptane                                                | ,                                                                          | C <sub>8</sub> H <sub>12</sub> O                                    | 106-86-5  | 124.180     |                             | <-100       | 169                |                           | 1.470020             |                                                |
| 10817 | Vinyloxirane                                                                           |                                                                            | C <sub>4</sub> H <sub>6</sub> O                                     | 930-22-3  | 70.090      |                             |             | 68(2)              | 0.900625                  | 1.416820             | s EtOH, eth, bz                                |
| 10818 | 2-(Vinyloxy)ethanol                                                                    | Ethylene glycol monovinyl ether                                            | C <sub>4</sub> H <sub>8</sub> O <sub>2</sub>                        | 764-48-7  | 88.106      |                             |             | 139(4)             | 0.982120                  | 1.456417             | s H <sub>2</sub> O, EtOH,<br>eth, bz; i lig    |
| 10819 | Vinyl propanoate                                                                       | Vinyl propionate                                                           | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub>                        | 105-38-4  | 100.117     |                             |             | 94.8(0.2)          |                           |                      |                                                |
| 10820 | 2-Vinylpyridine                                                                        |                                                                            | C <sub>7</sub> H <sub>7</sub> N                                     | 100-69-6  | 105.138     |                             |             | 159.5              | 0.998320                  | 1.549520             | sl H <sub>2</sub> O; vs EtOH,<br>eth, ace, chl |
| 10821 | 3-Vinylpyridine                                                                        |                                                                            | C <sub>7</sub> H <sub>7</sub> N                                     | 1121-55-7 | 105.138     |                             |             | 162                | 0.9879 <sup>20</sup>      | 1.5530 <sup>20</sup> | sl H <sub>2</sub> 0; s EtOH,<br>eth            |
| 10822 | 4-Vinylpyridine                                                                        |                                                                            | C <sub>7</sub> H <sub>7</sub> N                                     | 100-43-6  | 105.138     | red to dk-br                |             | 121150             | 0.987920                  | 1.544920             | s H <sub>2</sub> O, EtOH,<br>chl; sl eth       |
| 10823 | 1-Vinyl-2-pyrrolidinone                                                                |                                                                            | C <sub>6</sub> H <sub>9</sub> NO                                    | 88-12-0   | 111.141     |                             | 13.5        | 193400             | 1.0420                    |                      |                                                |
| 10824 | Vinylsilane                                                                            |                                                                            | C <sub>2</sub> H <sub>6</sub> Si                                    | 7291-09-0 | 58.155      | col gas                     | -171.6      | -22.8              |                           |                      |                                                |
| 10825 | Vinyl sulfoxide                                                                        | Divinyl sulfoxide                                                          | C <sub>4</sub> H <sub>6</sub> OS                                    | 1115-15-7 | 102.155     | liq                         |             | 8618               |                           |                      |                                                |
| 10826 | Vinyltriacetoxysilane                                                                  | Vinylsilanetriol, triacetate                                               | $C_8H_{12}O_6Si$                                                    | 4130-08-9 | 232.263     |                             |             | 115 <sup>10</sup>  | 1.16920                   | 1.422620             |                                                |
| 10827 | Vinyltriethoxysilane                                                                   |                                                                            | C <sub>8</sub> H <sub>18</sub> O <sub>3</sub> Si                    | 78-08-0   | 190.313     |                             |             | 160.0(0.8)         | 0.90120                   | 1.396025             |                                                |
| 10828 | Vinyltrimethylsilane                                                                   |                                                                            | C <sub>5</sub> H <sub>12</sub> Si                                   | 754-05-2  | 100.235     |                             |             | 55.3(0.2)          | 0.6520                    | 1.391420             |                                                |
| 10829 | Violaxanthin                                                                           |                                                                            | $C_{40}H_{56}O_4$                                                   | 126-29-4  | 600.871     | red pr<br>(MeOH,<br>al-eth) | 208         |                    |                           |                      | s EtOH, eth,<br>CS <sub>2</sub> ; i peth       |
| 10830 | Viquidil                                                                               |                                                                            | $C_{20}H_{24}N_2O_2$                                                | 84-55-9   | 324.417     |                             | 60          | -                  |                           |                      | vs eth, EtOH,                                  |
| 10831 | Visnadine                                                                              |                                                                            | $C_{21}H_{24}O_7$                                                   | 477-32-7  | 388.412     | nd                          | 85.5        |                    |                           |                      | i H <sub>2</sub> O; s EtOH,<br>eth             |
| 10832 | Visnagin                                                                               | 4-Methoxy-7-methyl-5 <i>H</i> -furo[3,2- <i>g</i> ][1]benzopyran-5-one     | C <sub>13</sub> H <sub>10</sub> O <sub>4</sub>                      | 82-57-5   | 230.216     | nd (w,<br>MeOH)             | 144.5       |                    |                           |                      | sl H <sub>2</sub> O, EtOH; vs<br>chl           |
| 10833 | Vitamin B12                                                                            | Cyanocobalamin                                                             | C <sub>63</sub> H <sub>88</sub> CoN <sub>14</sub> O <sub>14</sub> P | 68-19-9   | 1355.365    |                             | >300        |                    |                           |                      |                                                |
| 10834 | Vitamin D2                                                                             |                                                                            | C <sub>28</sub> H <sub>44</sub> O                                   | 50-14-6   | 396.648     |                             | 116.5       | sub                |                           |                      | i H <sub>2</sub> O; s EtOH,<br>eth, ace, chl   |
| 10835 | Vitamin D3                                                                             | 9,10-Secocholesta-5,7,10(19)-<br>trien-3-ol, (3β,5 <i>Z</i> ,7 <i>E</i> )- | C <sub>27</sub> H <sub>44</sub> O                                   | 67-97-0   | 384.637     |                             | 84.5        |                    |                           |                      | i H <sub>2</sub> 0; s os                       |
| 10836 | Vitamin E                                                                              | α-Tocopherol                                                               | $C_{29}H_{50}O_2$                                                   | 59-02-9   | 430.706     | pale ye oil                 | 3.0         | 2100.1             | 0.95025                   | 1.504525             | i H <sub>2</sub> O; s EtOH,<br>eth, ace, chl   |







| No.   | Name                                                    | Synonym                     | Mol. Form.                                      | CAS RN     | Mol.<br>Wt. | Physical<br>Form | mp/°C         | bp/°C               | den<br>g cm <sup>-3</sup> | n <sub>D</sub> | Solubility                                                  |
|-------|---------------------------------------------------------|-----------------------------|-------------------------------------------------|------------|-------------|------------------|---------------|---------------------|---------------------------|----------------|-------------------------------------------------------------|
| 10540 | 3,5,5-Trimethyl-2-cyclohexen-<br>1-ol                   | Isophorol                   | C <sub>9</sub> H <sub>16</sub> O                | 470-99-5   | 140.222     |                  |               | 695                 | 0.91420                   | 1.471720       |                                                             |
| 10541 |                                                         | β-lonol                     | C <sub>13</sub> H <sub>22</sub> O               | 22029-76-1 | 194.313     |                  |               | 13014               | 0.924320                  | 1.496920       | s EtOH, eth, ace                                            |
| 10542 | 4-(2,6,6-Trimethyl-2-cyclo-<br>hexen-1-yl)-3-buten-2-ol | α-lonol                     | C <sub>13</sub> H <sub>22</sub> O               | 25312-34-9 | 194.313     | oil              |               | 12714               | 0.918920                  | 1.473520       |                                                             |
| 10543 | 1,1,2-Trimethylcyclopentane                             |                             | C <sub>8</sub> H <sub>16</sub>                  | 4259-00-1  | 112.213     | lia              | -21.7(0.2)    | 113.7(0.2)          | 0.766020                  | 1.419920       |                                                             |
| 10544 | 1,1,3-Trimethylcyclopentane                             |                             | C <sub>8</sub> H <sub>16</sub>                  | 4516-69-2  | 112.213     |                  | -142.5(0.2)   | 104.9(0.6)          | 0.743925                  |                | i H₃0                                                       |
| 10545 | 1α,2α,4β-1,2,4-                                         |                             | C <sub>8</sub> H <sub>16</sub>                  | 4850-28-6  | 112.213     |                  | -131(5)       | 116.7(0.6)          | 0.759225                  | 1.418620       |                                                             |
| 10546 | Trimethylcyclopentane<br>1α,2β,4α-1,2,4-                |                             | C <sub>8</sub> H <sub>16</sub>                  | 16883-48-0 | 112.213     | lia              | -130.8(0.3)   | 110(3)              | 0.7430 <sup>25</sup>      | 1.410620       |                                                             |
| 10547 | Trimethylcyclopentane  cis-1,2,2-Trimethyl-1,3-         |                             | C <sub>10</sub> H <sub>16</sub> O <sub>4</sub>  | 124-83-4   |             | pr, lf (w)       | 187           | 110(0)              | 1.18620                   | 1.1100         | sl H <sub>2</sub> 0; vs EtOH,                               |
|       | cyclopentanedicarboxylic acid, (1 <i>R</i> )            |                             | O <sub>10</sub> N <sub>16</sub> O <sub>4</sub>  | 124-03-4   | 200.232     | pi, ii (w)       | 107           |                     |                           |                | eth; s ace; i<br>bz, chl                                    |
| 10548 | 2,2,4-Trimethylcyclopenta-<br>none                      |                             | C <sub>8</sub> H <sub>14</sub> O                | 28056-54-4 | 126.196     | liq              | -40.6         | 158                 | 0.87725                   | 1.430020       |                                                             |
| 10549 | 2,4,4-Trimethylcyclopenta-<br>none                      |                             | $C_8H_{14}O$                                    | 4694-12-6  | 126.196     | liq              | -25.6         | 160.5               | 0.878518                  | 1.43318        |                                                             |
| 10550 | 1,1,2-Trimethylcyclopropane                             |                             | C <sub>6</sub> H <sub>12</sub>                  | 4127-45-1  | 84.159      | liq              | -138.2(0.1)   | 53(1)               | 0.689725                  | 1.386420       |                                                             |
| 10551 | 3,7,11-Trimethyl-2,6,10-<br>dodecatrienal               |                             | C <sub>15</sub> H <sub>24</sub> O               | 19317-11-4 | 220.351     |                  |               | 17214               | 0.89318                   | 1.4995         |                                                             |
| 10552 | Trimethylgallium                                        |                             | C₃H₃Ga                                          | 1445-79-0  | 114.826     |                  |               | 55.7                |                           |                | dec H <sub>2</sub> O (exp)                                  |
| 10553 | 2,2,6-Trimethylheptane                                  |                             | C <sub>10</sub> H <sub>22</sub>                 | 1190-83-6  | 142.282     | lia              | -105(1)       | 149(4)              | 0.720025                  | 1.407820       | -2- (0/10)                                                  |
| 10554 | 2,5,5-Trimethylheptane                                  |                             | C <sub>10</sub> H <sub>22</sub>                 | 1189-99-7  | 142.282     | 4                | .00(.)        | 153(3)              | 0.736225                  |                |                                                             |
| 10555 | 3,3,5-Trimethylheptane                                  |                             | C <sub>10</sub> H <sub>22</sub>                 | 7154-80-5  | 142.282     |                  |               | 157(3)              | 0.724820                  |                | i H <sub>2</sub> O; s bz, ctc,<br>chl                       |
| 10556 | 3,4,5-Trimethylheptane                                  |                             | C <sub>10</sub> H <sub>22</sub>                 | 20278-89-1 | 142.282     |                  |               | 162.5               | 0 751Q25                  | 1.422920       | CIII                                                        |
| 10557 | 2,2,3-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 16747-25-4 |             |                  |               | 134(2)              | 0.725725                  | 1.410620       |                                                             |
| 10558 | 2,2,4-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 16747-26-5 |             | lig              | -122(4)       | 127(2)              | 0.71120                   | 1.403320       |                                                             |
|       | 2,2,5-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 3522-94-9  | 128.255     |                  | -105.9(0.1)   | 124(2)              | 0.711                     |                | i H₂O; vs EtOH,                                             |
| 10339 | 2,2,5-11111ettiyinexane                                 |                             | о <sub>9</sub> п <sub>20</sub>                  | 3322-94-9  | 120.200     | пц               | -105.9(0.1)   | 124(2)              | 0.7072-                   | 1.5997-        | eth, ace, bz; s                                             |
| 10560 | 2,3,3-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 16747-28-7 | 128.255     | liq              | -116.8(0.2)   | 137(3)              | 0.734525                  | 1.414120       |                                                             |
| 10561 | 2,3,4-Trimethylhexane                                   |                             | $C_9H_{20}$                                     | 921-47-1   | 128.255     |                  |               | 139(3)              | 0.735425                  | 1.414420       |                                                             |
| 10562 | 2,3,5-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 1069-53-0  | 128.255     | liq              | -127.9(0.2)   | 131(2)              | 0.721820                  | 1.405120       |                                                             |
| 10563 | 2,4,4-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 16747-30-1 | 128.255     | liq              | -113.4(0.1)   | 130.6(0.7)          | 0.720125                  | 1.407420       |                                                             |
| 10564 | 3,3,4-Trimethylhexane                                   |                             | C <sub>9</sub> H <sub>20</sub>                  | 16747-31-2 | 128.255     | liq              | -101.2(0.2)   | 139(4)              | 0.741425                  | 1.417820       |                                                             |
| 10565 | 3,5,5-Trimethylhexanoic acid                            | Isononanoic acid            | C <sub>9</sub> H <sub>18</sub> O <sub>2</sub>   | 3302-10-1  | 158.238     | liq              |               | 121 <sup>10</sup>   |                           |                |                                                             |
| 10566 | 3,5,5-Trimethyl-1-hexanol                               |                             | C <sub>9</sub> H <sub>20</sub> O                | 3452-97-9  | 144.254     |                  |               | 193(5)              | 0.823625                  | 1.430025       |                                                             |
| 10567 | 1,2,3-Trimethylindene                                   |                             | C <sub>12</sub> H <sub>14</sub>                 | 4773-83-5  | 158.239     | liq              |               | 100.5 <sup>10</sup> | 0.971420                  | 1.552120       |                                                             |
| 10568 | Trimethylindium                                         | Indium trimethyl            | C <sub>3</sub> H <sub>9</sub> In                | 3385-78-2  | 159.921     |                  |               | 135.7               | 1.56819                   |                |                                                             |
| 10569 | 2,3,3-Trimethyl-3 <i>H</i> -indole                      |                             | C <sub>11</sub> H <sub>13</sub> N               | 1640-39-7  | 159.228     |                  |               | 10711               |                           |                |                                                             |
| 10570 | Trimethyl(4-methylphenyl)-<br>silane                    |                             | C <sub>10</sub> H <sub>16</sub> Si              | 3728-43-6  | 164.320     |                  | 38            | 192                 | 0.866620                  | 1.490020       |                                                             |
| 10571 | 1,4,5-Trimethylnaphthalene                              |                             | C <sub>13</sub> H <sub>14</sub>                 | 2131-41-1  | 170.250     | If (MeOH)        | 64.0(0.6)     | 145 <sup>12</sup>   |                           |                | i H <sub>2</sub> 0                                          |
| 10572 | 1,3,5-Trimethyl-2-nitroben-<br>zene                     |                             | C <sub>9</sub> H <sub>11</sub> NO <sub>2</sub>  | 603-71-4   | 165.189     | orth pr (al)     | 44(2)         | 255                 | 1.5125                    |                | vs Et0H                                                     |
| 10573 | 2,6,8-Trimethyl-4-nonanol                               |                             | C <sub>12</sub> H <sub>26</sub> O               | 123-17-1   | 186.333     |                  |               | 225.4               | 0.817820                  |                | sl ctc                                                      |
| 10574 | 2,4,7-Trimethyloctane                                   |                             | C <sub>11</sub> H <sub>24</sub>                 | 62016-38-0 |             |                  |               | 170(5)              |                           |                |                                                             |
|       | Trimethylolpropane                                      |                             | C <sub>6</sub> H <sub>14</sub> O <sub>3</sub>   | 77-99-6    | 134.173     | wh pow or pl     | 60.2(0.2)     | 1605                |                           |                | vs H <sub>2</sub> O, EtOH                                   |
| 10576 | 3,5,5-Trimethyl-2,4-oxazoli-<br>dinedione               | Trimethadione               | $C_6H_9NO_3$                                    | 127-48-0   | 143.140     | F.               | 46            | 795                 |                           |                | s H <sub>2</sub> O; vs EtOH,<br>eth, ace, bz; i<br>peth     |
| 10577 | Trimethyloxonium fluoborate                             |                             | C <sub>3</sub> H <sub>9</sub> BF <sub>4</sub> O | 420-37-1   | 147.907     | hyg nd           | 148 dec       |                     |                           |                | vs ace, chl                                                 |
| 10578 | 2,4,4-Trimethyl-2-pen-<br>tanamine                      |                             | C <sub>8</sub> H <sub>19</sub> N                | 107-45-9   | 129.244     | ,,,              |               |                     |                           |                | s chl                                                       |
| 10579 | 2,2,3-Trimethylpentane                                  | 2- <i>tert</i> -Butylbutane | C <sub>8</sub> H <sub>18</sub>                  | 564-02-3   | 114.229     | liq              | -112.4(0.3)   | 109.8(0.4)          | 0.716120                  | 1.403020       | i H <sub>2</sub> 0; msc<br>Et0H, eth, ace,<br>hp; s bz      |
| 10580 | 2,2,4-Trimethylpentane                                  | Isooctane                   | C <sub>8</sub> H <sub>18</sub>                  | 540-84-1   | 114.229     | liq              | -107.36(0.04) | 99.2(0.2)           | 0.6878 <sup>25</sup>      | 1.388425       | i H <sub>2</sub> O; msc<br>EtOH, ace, hp;<br>s eth, ctc     |
| 10581 | 2,3,3-Trimethylpentane                                  |                             | C <sub>8</sub> H <sub>18</sub>                  | 560-21-4   | 114.229     | liq              | -101.2(0.3)   | 114.7(0.3)          | 0.726220                  | 1.407520       | i H <sub>2</sub> O; vs EtOH;<br>msc eth, ace,<br>bz, hp     |
| 10582 | 2,3,4-Trimethylpentane                                  |                             | C <sub>8</sub> H <sub>18</sub>                  | 565-75-3   | 114.229     | liq              | -109.3(0.2)   | 113.4(0.3)          | 0.719120                  | 1.404220       | i H <sub>2</sub> O; vs EtOH;<br>msc eth, ace,<br>bz; sl ctc |
| 10583 | 2,2,4-Trimethyl-1,3-pentane-<br>diol                    |                             | C <sub>8</sub> H <sub>18</sub> O <sub>2</sub>   | 144-19-4   | 146.228     | pl (bz)          | 55.2(0.5)     | 230.1(0.3)          | 0.93615                   | 1.451315       | sl H <sub>2</sub> 0; vs EtOH,<br>eth; s bz, chl             |





|     |    | Give complete and                                                                                                                                                                                                                                                                                                                                                                                                                                   | swers | for all responses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15) | 1. | Do you <b>need</b> to write a description of the apparatus or techniques used in a synthesis experiment? Explain, why or why not.                                                                                                                                                                                                                                                                                                                   | (5)   | <ul> <li>5. You synthesize asprin (C<sub>9</sub>H<sub>8</sub>O<sub>4</sub>) from salicyclic acid (C<sub>7</sub>H<sub>6</sub>O<sub>3</sub>) and acetic anhydride (C<sub>4</sub>H<sub>8</sub>O<sub>3</sub>) using 3.00 g of salicyclic acid and 6.00 grams of acetic anhydride. After the reaction and filtration, you recover 3.10 g of aspirin. The reaction is as follows:</li> <li>C<sub>7</sub>H<sub>6</sub>O<sub>3</sub> + C<sub>4</sub>H<sub>8</sub>O<sub>3</sub> → C<sub>9</sub>H<sub>8</sub>O<sub>4</sub> + C<sub>2</sub>H<sub>4</sub>O<sub>2</sub></li> <li>(a) What is the theoretical yield for the above</li> </ul> |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | reaction?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10) | 2. | What determines whether to write out the side reactions or not? How do you make this determination?                                                                                                                                                                                                                                                                                                                                                 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10) | 3. | Why would you measure the melting point of a product in the lab?                                                                                                                                                                                                                                                                                                                                                                                    | (3)   | (b) What is the experimental yield for the reaction?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4)   | (c) What is the percent yield for the reaction?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10) | 4. | Lab group A measures the melting point of a product presumed to be isatin to be between $188\mathrm{C}^\circ$ and $193\mathrm{C}^\circ$ . Lab group B measures the melting point of a product also presumed to be isatin to be between $190\mathrm{C}^\circ$ and $194\mathrm{C}^\circ$ . The Aldrich catalog lists the melting point of isatin to be between $193\mathrm{C}^\circ$ and $195\mathrm{C}^\circ$ . Whose product is more pure? Explain. | (10)  | 6. What would you include in the lab notebook of a synthesis experiment? List and describe as many elements as you can.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|      |    |        | Give complete answers for all res                                                  | sponse | es and feel free to draw diagrams.                                                                           |
|------|----|--------|------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------|
| (10) | 1. |        | nstrate how to fold filter paper and take a e to submit along with your responses. |        | 4. A good solvent for the recrystalization process used for purification of a product.                       |
| (5)  | 2. | Draw   | a diagram of the gravity filtration setup.                                         | (2)    | (a) Dissolves the solid while                                                                                |
|      |    |        |                                                                                    | (4)    | (b) The same solvent does not dissolve the solid when and does not dissolve the for forever.                 |
|      |    |        |                                                                                    |        | 5. Describe the process of recrystalization. Assuming your solvent has been selected.                        |
|      |    |        |                                                                                    | (2)    | (a) Put the solid in an                                                                                      |
|      |    |        |                                                                                    | (2)    | (b) Heat the solvent on a                                                                                    |
|      |    |        |                                                                                    | (2)    | (c) Add the hot to the solid until it is just                                                                |
| (5)  | 3. |        | a diagram of the vacuum filtration setup                                           | (2)    | (d) Add of excess solvent to the the solid.                                                                  |
|      |    | with E | Buchner flask.                                                                     | (2)    | (e) If there is obvious trash in the sample, then use                                                        |
|      |    |        |                                                                                    | (3)    | (f) Examine the sample mixture for If it looks like there is more                                            |
|      |    |        |                                                                                    |        | product to be dissolved, then add more hot                                                                   |
|      |    |        |                                                                                    | (4)    | (g) the solution down slowly.  Once it is warm to the touch, cool with an                                    |
|      |    |        |                                                                                    | (3)    | (h) When the flask is cooling down in its bath, watch out for (1) the flask, and (2) a flask that is too hot |
|      |    |        |                                                                                    | (4)    | (i) After the product is cool, use                                                                           |

 $\_$  and take a  $\_$ 

### Give complete answers for all responses and feel free to draw diagrams.

|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5. Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncerning simple distillation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                               | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) Describe the process of simple distillation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 (  | Concerning simple and vacuum distillation:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ,    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | ods?                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | lation rather than simple?                                                    | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) Draw a diagram of the setup and label the parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. ( | Concerning simple and fractional distillation:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (a) What is the difference between these methods?                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6. Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncerning fractional distillation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | (b) When is it appropriate to use fractional distillation rather than simple? | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) Describe the process of fractional distillation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (a) What is the difference between these methods?                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               | (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) Draw a diagram of the setup and label the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (b) When is it appropriate to use steam distillation rather than simple?      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 3. (                                                                          | 2. Concerning simple and vacuum distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use vacuum distillation rather than simple?  3. Concerning simple and fractional distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use fractional distillation rather than simple?  4. Concerning simple and steam distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use steam distillation rather than simple? | basis of what?  (5)  2. Concerning simple and vacuum distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use vacuum distillation rather than simple?  (8)  3. Concerning simple and fractional distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use fractional distillation rather than simple?  (5)  4. Concerning simple and steam distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use steam distillation:  (a) What is the difference between these methods?  (b) When is it appropriate to use steam distillation rather than simple? | basis of what?  (5) (a  2. Concerning simple and vacuum distillation: (a) What is the difference between these methods?  (b) When is it appropriate to use vacuum distillation rather than simple?  (8) (b)  3. Concerning simple and fractional distillation: (a) What is the difference between these methods?  (5) (a  4. Concerning simple and steam distillation: (a) What is the difference between these methods?  (5) (a  (a) What is the difference between these methods?  (b) When is it appropriate to use fractional distillation: (a) What is the difference between these methods?  (b) When is it appropriate to use steam distillation rather than simple? |

|      | Give complete answers for all res                                                                                                                                                     | sponses and feel free to draw diagrams.                       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| (8)  | 1. The purpose of the reflux setup is to allow a reaction to occur at temperature for an extended period of time. The temperature of the reaction is always the point of the solvent. | tion?                                                         |
|      | 2. Concerning the reflux setup:                                                                                                                                                       |                                                               |
| (14) | (a) Draw a diagram of a standard reflux setup. Label all of the parts.                                                                                                                | (7) 4. What is the difference between a dry and a wet reflux? |
|      |                                                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       | (7) 5. Why would you do an addition and reflux setup?         |
| (7)  | (b) How does the reflux setup keep the mixture                                                                                                                                        |                                                               |
|      | boiling without losing solvent?                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       |                                                               |
|      |                                                                                                                                                                                       |                                                               |

Show all work leading up to **all** responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

(5)

(4) 1. Given the structure below label the Carbon atoms as 1, 2, 3 and 4. Then, indicate which carbon atoms are primary, secondary, and tertiary.

$$\operatorname{CH}_3$$
 $\left| \begin{array}{c} \operatorname{CH}_3 \\ \end{array} \right|$ 
 $\operatorname{CH}_3 \longrightarrow \operatorname{C} \longrightarrow \operatorname{CH}_2 \longrightarrow \operatorname{CH}_3$ 

- (8) 4. Predict the products for the following reaction:  $CH_3 CH_2OH \xrightarrow{H_3O^+}$ heat
- (8) 5. Predict the products for the following reaction:  $_{\rm Br}$

$$\begin{array}{c}
\operatorname{Br} \\
\operatorname{CH}_{3} - \operatorname{C} - \operatorname{CH}_{2}\operatorname{CH}_{3} \\
& \operatorname{Br}
\end{array}$$

- 2. Identify all the functional groups in the following compounds:
- 6. Draw a reaction energy diagram for a two-step reaction with  $K_{\rm eq} > 1$ .
  - (a) Label the parts of the diagram corresponding tor reactants, products, transition state,  $\Delta G^{+}$ , and  $\Delta G^{+}$ .

(3) (a) 
$$CH_3 - CH_2 - CH - C - OH$$
 $CH_2 - CI$ 

$$\begin{array}{ccc} & & \text{OH NH}_2 \\ | & | & | \\ \text{(3)} & & \text{(b) } \text{CH}_3 - \text{C} - \text{CH} - \text{CH}_2 \text{CH}_3 \\ | & | \\ \text{CH}_2 \text{CH}_3 & \\ \end{array}$$

(3) (d) CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>

- (2) (b) Is  $\Delta G^{\circ}$  positive or negative?
  - 7. Consider the following compound: F H

- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (5) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (8) 3. Predict the products for the following reaction:

$$CH_3 - CH_2 - CH_2 - CH_2 + HBr$$
 $CH_3$ 
 $CH_3$ 
 $ether$ 

(4)

(4)

(4)

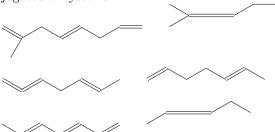
8. Consider the following compound:  $CH_3CH_2$  OH

$$\mathrm{CH_2}$$
  $\mathrm{CH_2}$   $\mathrm{CH_3}$ 

- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?

for each resonance structure.

stable.


- (5) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (e) Would you predict adding an oxygen atom making (oxidizing) to NO<sub>2</sub> result in a less or more energetic form in NO<sub>3</sub>. Explain why using your resonance structures and formal charges.

(c) Draw in above the formal charges on all atoms

(d) Determine which resonance structure is the

most stable. And, explain why it is the most

- 9. Consider the ion  $NO_2^-$  and the molecule  $NO_3^-$ . The electrognegativity of the elements involved are: O, 3.5 and N, 3.0.
- (6) (a) Draw all the resonance structures for the ion  $NO_2^-$ .
- (7) 10. Circle the chemical structures that represent conjugated  $\pi$  systems.



11. Write the name of the following chemical com-

- (6) (b) Draw all the resonance structures for the molecule  $NO_3^-$ .
- pound: O  $\parallel$  CH<sub>3</sub> CH<sub>2</sub> CH C CH<sub>3</sub>  $\parallel$  CH<sub>2</sub> Cl
- (1) (a) Identify the parent alkane.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.
  - 12. Draw the structure of 2-Chloro-3-methylhex-4-one
- (1) (a) Identify the parent alkane.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Draw the chemical structure of the compound.

#### **IUPAC Naming Rules**

- 1. Find the longest continuous carbon chain containing the highest priority functional group. Determine the root name for this parent chain.<sup>1</sup> Assign the parent name using the root name and the functional group. Note that the position number will need to go before the ending with dashes if the ending is anything other than -ane.
- 2. Number the chain in the direction such that the position number of the first substituent is the smaller number. If the first substituents from either end have the same number, then number

- so that the second substituent has the smaller number, etc.
- 3. Determine the name and position number of each substituent.
- 4. Indicate the number of identical groups by the prefixes di, tri, tetra, etc.
- 5. Place the position numbers and names of the substituent groups, in alphabetical order, before the root name. In alphabetizing, ignore prefixes like sec-, tert-, di, tri, etc. and include the isoprefix. Always include a position number for each substituent, regardless of redundancies.

Points earned: \_\_\_\_\_ out of a possible 0 points

<sup>&</sup>lt;sup>1</sup>When there are two longest chains of equal length, use the chain with the greater number of substituents.

Show all work leading up to **all** responses. You may attach additional pages if needed. If you do so, then list the question number next to any work.

(5)

(4) 1. Given the structure below label the Carbon atoms as 1, 2, 3 and 4. Then, indicate which carbon atoms are primary, secondary, and tertiary.  $CH_2CH_3$ 

$$\operatorname{CH}_3$$
 —  $\operatorname{CH}_2$  —  $\operatorname{CH}$  —  $\operatorname{CH}_3$ 

- (8) 4. Predict the products for the following reaction:  $H_2C \equiv CH_2 + 2HBr \xrightarrow{\text{ether}}$
- (8) 5. Predict the products for the following reaction:

  Br

  CH<sub>3</sub> CH CH<sub>2</sub>CH<sub>3</sub>

  KOH
- 2. Identify all the functional groups in the following compounds:
- action with K<sub>eq</sub> = 1.
  (a) Label the parts of the diagram corresponding tor reactants, products, transition state, ΔG<sup>Φ</sup>, and ΔG<sup>‡</sup>.

6. Draw a reaction energy diagram for a two-step re-

- (3) (a)  $CH_3 CH_2 CH_2 CH C OH$   $CH_2 Br$
- $\begin{array}{ccc} & & \text{OH NH}_2 \\ | & | & | \\ | & \text{CH}_3 \text{C} \text{CH} \text{CH}_2 \text{CH}_3 \\ | & | & \\ | & \text{CH}_2 \text{CH}_3 \end{array}$
- (3) (c) OH Cl O
- (3) O  $\parallel$  (d)  $CH_3 C O CH_2CH_2CH_2CH_3$

- (2) (b) Is  $\Delta G^{\circ}$  positive, negative or zero?
  - 7. Consider the following compound:

$$C = C$$

- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- (5) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (8) 3. Predict the products for the following reaction:

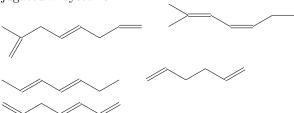
(4)

(4)

(4)

8. Consider the following compound:

Cl Cl


- (6) (a) Would this compound need a cis, trans, (Z), or (E) designation?
- most stable. And, explain why it is the most stable.

(c) Draw in above the formal charges on all atoms

(d) Determine which resonance structure is the

for each resonance structure.

- (5) (b) How many  $\sigma$  and  $\pi$ -bonds are in this compound?
- (e) Is  $CO_3^{2-}$  a good base by being able to accept a proton (H<sup>+</sup>)? Explain why using your resonance structures and formal charges.
- 9. Consider the ion HCO<sub>3</sub><sup>-</sup> and the molecule CO<sub>3</sub><sup>2-</sup>. The electrognegativity of the elements involved are: O, 3.5; C, 2.5; and H, 2.1.
- (6) (a) Draw all the resonance structures for the ion  $CO_3^{2-}$ .
- (7) 10. Circle the chemical structures that represent conjugated  $\pi$  systems.



11. Write the name of the following chemical compound:

 $\begin{array}{c} \operatorname{CH_3} \\ | \\ \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{C} - \operatorname{CH_2OH} \\ | \\ \operatorname{Cl} \end{array}$ 

- (6) (b) Draw all the resonance structures for the ion  $HCO_3^-$ .
- (1) (a) Identify the parent alkane.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Write the IUPAC name of the compound.
  - 12. Draw the structure of 2-Bromo-3-methylpental
- (1) (a) Identify the parent alkane.
- (1) (b) Identify all functional groups in the compound.
- (3) (c) Draw the chemical structure of the compound.

#### **IUPAC Naming Rules**

- 1. Find the longest continuous carbon chain containing the highest priority functional group. Determine the root name for this parent chain.<sup>1</sup> Assign the parent name using the root name and the functional group. Note that the position number will need to go before the ending with dashes if the ending is anything other than -ane.
- 2. Number the chain in the direction such that the position number of the first substituent is the smaller number. If the first substituents from either end have the same number, then number

- so that the second substituent has the smaller number, etc.
- 3. Determine the name and position number of each substituent.
- 4. Indicate the number of identical groups by the prefixes di, tri, tetra, etc.
- 5. Place the position numbers and names of the substituent groups, in alphabetical order, before the root name. In alphabetizing, ignore prefixes like sec-, tert-, di, tri, etc. and include the isoprefix. Always include a position number for each substituent, regardless of redundancies.

Points earned: \_\_\_\_\_ out of a possible 0 points

<sup>&</sup>lt;sup>1</sup>When there are two longest chains of equal length, use the chain with the greater number of substituents.

- 1. Names, structures of the common Alkanes: methane, ethane, propane, butane, pentane, hexane.
- 2. Names, endings and structures of the common Alkyl groups: methane, ethane, propane, butane.
- 3. Names, structures and endings of common functional groups: halide, alkene, alkyne, aldehyde, ketone, carboxylic acid, amine.

#### **Reaction Patterns**

 Addition Reactions: Two reactants add together to give a single new product. The reactions also follow Markovnikov's Rule.

Markovnikov's Rule In the addition of HX to an alkene, the H attaches to the carbon with fewer alkyl substituents and the X attaches to the carbon with more alkyl substituents.

$$H_2C = CH_2 + H - X \xrightarrow{\text{ether}} H \xrightarrow{\text{K}} X$$
 $CH_2 - CH_2$ 

where X=Cl, Br, or I.

where X=Cl or Br.

Elimination Reaction: One reactant splits into two products. Typically one product is a small molecule such as H<sub>2</sub>O or HCl. H OH H<sub>2</sub>O<sup>+</sup>

where X=Cl, Br, or I.

3. Substitution Reaction: Two reactants exhange parts to give two new products. (X=Cl, Br, or

I)
H
$$\downarrow$$
 $CH_3 + X_2$ 
 $h\nu$ 
 $CH_3 + HCl$ 

4. Rearrangement Reaction: One reactant undergoes a reorganization to yield a single isomeric product.

#### Alcohols

• Dehydration to produce an alkene.

$$CH_3CH_2OH \xrightarrow{H_3O^+} H_2C = CH_2 + H_2O$$

 Primary alcohols with periodinane to produce an aldehyde.

 Primary alcohols with CrO<sub>3</sub> to produce a carbocylic acid.

$$CH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$$
 $OH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$ 
 $OH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$ 

 Secondary alcohols with periodinane to produce a ketone.

CH<sub>3</sub>CHOHCH<sub>3</sub> 
$$\xrightarrow{\text{Periodinane}}$$
  $\xrightarrow{\text{CH}_2\text{Cl}_2}$   $\xrightarrow{\text{CH}_3-\text{C}-\text{CH}_3}$ 

### Ethers and Epoxides

- Acidic cleaveage of an ether with HBr or HI  $CH_3OCH_2CH_3$   $\xrightarrow{HX}$   $CH_3X + CH_2CH_3OH$
- Epoxide opening with aqueous acid.

### Skills Needed

- 1. Be able to draw chemical structures given a name.
- 2. Be able to determine the IUPAC name given the chemical structure.
- 3. Be able to identify common functional groups.
- 4. Be able to determine whether a carbon atom is primary, secondary, or tertiary.
- 5. Be able to draw and interpret reaction coordinate diagrams.
- 6. Predict the products of reactions.
- 7. Be able to count the number of  $\sigma$  and  $\pi$ -bonds.
- 8. Be able to differentiate between cis and trans Isomers and use the E, Z dezignations.
- 9. Differentiate between compounds in which resonance is important.
- 10. Predict the effect of resonance on the stability of compounds and reactive intermediates.
- 11. Draw or represent resonance structures.
- 12. Identify conjugated  $\pi$ -systems and explain the effect of conjugation on molecular structure and reactivity.

# Provided during Exam

#### **IUPAC Naming**

- Name the parent hydrocarbon. Find the longest hydrocarbon chain that contains the double or triple bond. Triple bonds take precedence over double bonds.
- 2. Number the carbon atoms in the chain. Begin numbering the parent hydrocarbon at the end nearer the double or triple bond. (Again triple bonds recieve precedence.) The numbering should be such that the double/triple bonds recieve the lowest number possible. If there is a tie, then use the numbering that gives other substituents the lowest numbers possible.
- 3. Write the full name. Number the substituents using the carbon atom that the substituent is attached to. Note the first alkene/yne carbon and place it before the -ene suffix. For an example, hex-2-ene.

- 1. IUPAC Naming Rules for alkanes.
  - (a) Find the parent hydrocarbon.
  - (b) Number the atoms in the main chain.
  - (c) Identify and number the substitutents.
  - (d) Write the name as a single word.
- 2. Names, structures of the common alkanes: methane, ethane, propane, butane, pentane, hexane.
- 3. Names, endings and structures of the common alkyl groups: methane, ethane, propane, butane.
- 4. Names, structures and endings of common functional groups: halide, alkene, alkyne, aldehyde, ketone, carboxylic acid, amine.
- 5. For the common reactions of alkanes, know their reactants, products, and conditions, if any.

### Skills Needed

- Be able to draw chemical structures given a name.
- 2. Be able to determine the IUPAC name given the chemical structure.
- 3. Be able to determine whether a carbon atom is primary, secondary, or tertiary.
- 4. Be able to draw Newman diagrams for conformers, classify the conformers as staggered or eclipsed and be able to draw a potential energy diagram showing the conformations.
- 5. Be able to identify steric interactions between functional groups.
- Be able to draw Fischer Projections for stereoisomers and determine the configuration of the isomers using the rules below.
- 7. Be able to predict the products of reactions between alkanes: chlorination, bromination, and oxidation.
- 8. Be able to draw mechanisms for reactions of alkanes: chlorination and bromination.
- 9. Be able to draw and interpret reaction coordinate diagrams.

# Provided during Exam

# Assigning Abs. Config. to Wedge/Dashed 3D Structures

- 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.
- 2. Orient the chiral centre such that the #4 priority substituent is pointing away from the viewer.
- 3. Trace the path of priorities #1, #2 and #3. (For this part you ignore #4).
- 4. If the path traced from 1-2-3 is clockwise, the chiral center is assigned (R) (from Latin, rectus)
- 5. If the path traced is counter clockwise, the chiral center is assigned (S) (from the Latin sinister)

### Assigning Abs. Cong. to Fischer Proj.

- 1. Prioritize the four groups around a chiral center according to atomic number. The highest atomic number is assigned priority #1, and the lowest atomic number is assigned priority #4.
- 2. Perform the two allowed manipulations of the Fischer projection to place the lowest priority group on one of the vertical positions (either top or bottom).
- 3. If the priorities of the other three groups (1-2-3) proceed clockwise, the stereogenic center is assigned as R. If the priorities of the other three groups (1-2-3) proceed counter clockwise, the stereogenic center is assigned as S.

### Lab Exam

- 1. Be aware of safety rules for the organic lab and why they are important.
- 2. Know what to do in the case of an accident.
- 3. Be able to read information out of the CRC Handbook and Aldrich Catalog.
- 4. Know how to keep a high-quality lab notebook.
- Know the difference between colorless, cloudy, and clear.

<sup>&</sup>lt;sup>1</sup>If two adjacent atoms are tied then you go to the next atom away from the center until the tie is broken.

#### Reaction Patterns

 Addition Reactions: Two reactants add together to give a single new product. The reactions also follow Markovnikov's Rule.

Markovnikov's Rule In the addition of HX to an alkene, the H attaches to the carbon with fewer alkyl substituents and the X attaches to the carbon with more alkyl substituents.

$$H_2C = CH_2 + H - X \xrightarrow{ether} CH_3CH_2X$$

where X=Cl, Br, or I.

$$H_2C \equiv CH_2 + H - X \xrightarrow{\text{ether}} CH_2 = C$$

$$HC \equiv CH + 2H - X \xrightarrow{\text{ether}} CH_2X - CH_2X$$

where X=Cl or Br.

2. Elimination Reaction: One reactant splits into two products. Typically one product is a small molecule such as  $H_2O$  or HCl.  $CH_3 - CH_2OH \xrightarrow{H_3O^+} H_2C = CH_2 + H_2O$   $CH_4 - CH_2X \xrightarrow{KOH} H_2C = CH_2 + KX + H_2O$   $CH_3 - CHX_2 \xrightarrow{2KOH} HC \equiv CH + 2KX + 2H_2O$   $H \xrightarrow{H} H$   $CH - CH \xrightarrow{L} DH$   $CH - CH \xrightarrow{L} DH$  CH - CH CH -

where X=Cl, Br, or I.

- Substitution Reaction: Two reactants exhange parts to give two new products. (X=Cl, Br, or I)
   CH<sub>4</sub> + X<sub>2</sub> hν → CH<sub>2</sub>X + HCl
- 4. Rearrangement Reaction: One reactant undergoes a reorganiziation to yield a single isomeric product.

  Br Br Br C=C H Catalyst C=C H H H

#### Mechanisms

1. Addition Mechanism:  $\begin{array}{c} X \\ H_2C = CH_2 + H - X \end{array} \xrightarrow{ether} \begin{array}{c} X \\ | \\ CH_3 - CH_2 \end{array}$  where X=Cl, Br, or I.

2. Elimination Mechanism:  $H_3O^+ \longrightarrow H_2C = CH_2 + H_2O$ 

### Skills Needed

- 1. Write the mechanisms for the addition and elimination reactions of alkenes.
- 2. Predict the products of alkene reactions.
- 3. Compare the bonding and reactions of alkynes to alkenes.
- 4. Be able to count the number of  $\sigma$  and  $\pi$ -bonds.
- 5. Be able to differentiate between Cis and Trans Isomers and use the E, Z dezignations.

### Lab Exam

- 1. Synthesis Lab Notebook Be able to list the elements of a good Synthesis Experiment lab notebook section.
- 2. Perform a theoretical and experimental yield calculation given the mass of reactants, products, and the chemical equation.
- 3. Melting Point Lab Exp. Be able to outline the steps involved in performing a measurement of the melting point, and be able to discuss sample results of a melting point measurement.

# Provided during Exam

#### Naming Alkenes/Alkynes

- Name the parent hydrocarbon. Find the longest hydrocarbon chain that contains the double or triple bond. Triple bonds take precedence over double bonds.
- 2. Number the carbon atoms in the chain. Begin numbering the parent hydrocarbon at the end nearer the double or triple bond. (Again triple bonds recieve precedence.) The numbering should be such that the double/triple bonds recieve the lowest number possible. If there is a tie, then use the numbering that gives other substituents the lowest numbers possible.
- 3. Write the full name. Number the substituents using the carbon atom that the substituent is attached to. Note the first alkene/yne carbon and place it before the -ene suffix. For an example, hex-2-ene.

Mechanisms and Reaction Patterns You should know the mechanisms and reaction patterns for all of the below.

#### Dienes

• Dienes can be made through a number of different reactions. We will focus on using Stille coupling.

 $\operatorname{RSnBu_3} + \operatorname{R'X} \xrightarrow{} \operatorname{R-R'} + \operatorname{X-SnBu_3}$  $\operatorname{Bu}$  is a butyl group,  $\operatorname{X}$  can be Cl, Br, or I.  $\operatorname{R}$  and  $\operatorname{R'}$  can be aryl or vinyl groups. If two vinyl groups are used, then a conjugated diene is produced.

#### **Alcohols**

• Dehydration to produce an alkene.

$$CH_3CH_2OH \xrightarrow{H_3O^+} H_2C = CH_2 + H_2O$$

• Primary alcohols with periodinane to produce an aldehyde.

$$CH_3CH_2OH \xrightarrow{Periodinane} CH_2Cl_2 CH_3 - CH$$

 $\bullet$  Primary alcohols with  ${\rm CrO_3}$  to produce a carbocylic acid.

$$CH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$$
 $OH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$ 
 $OH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$ 
 $OH_3CH_2OH \xrightarrow{CrO_3} CH_3 - C$ 

 Secondary alcohols with periodinane to produce a ketone.

OH<sub>H3</sub> Periodinane 
$$CH_3CH$$
  $CH_3CH$   $CH_3CH$   $CH_3CH$   $CH_3-C$   $CH_3$ 

#### Ethers and Epoxides

 $\begin{array}{c} \bullet \ \, \text{Acidic cleaveage of an ether with HBr or HI} \\ \text{CH}_{3}\text{OCH}_{2}\text{CH}_{3} & \xrightarrow{HX} & \text{CH}_{3}\text{X} + \text{CH}_{2}\text{CH}_{3}\text{OH} \\ \end{array}$ 

• Epoxide opening with aqueous acid.

$$\begin{array}{c}
 & \xrightarrow{\text{H}_3\text{O}^+} \\
 & \xrightarrow{\text{OH}} \\
 & \xrightarrow{\text{OH}}
\end{array}$$

#### Sulfur compounds

• Oxidation of sulfur compounds from sulfide to sulfoxide to sulfone.

#### Amines

• Synthesis of a primary amine.  $NH_3 + CH_3CH_2X \xrightarrow{\begin{subarray}{c} NaOH \\ \hline \end{subarray}} CH_3CH_2NH_2$ 

• Synthesis of a secondary amine.

### Skills

- 1. Differentiate between compounds in which resonance is important.
- 2. Predict the effect of resonance on the stability of compounds and reactive intermediates.
- 3. Draw or represent resonance structures.
- 4. Identify conjugated  $\pi$ -systems and explain the effect of conjugation on molecular structure and reactivity.
- 5. Compare and contrast the mechanisms for substitution and elimination reactions; and predict the effect of nucleophile; leaving group; and solvent on the relative rates of SN1 versus SN2; and E1 versus E2 reactions; as well as on the relative rates of substitution versus elimination.

### Lab Exam

- 1. Be able to draw diagrams and describe the gravity filtration setup and vacuum filtration setup with Buchner flask.
- 2. Understand and be able to describe the recrystalization technique.

# Provided during Exam

**IUPAC Naming** Be able to name alcohols, amines, ethers, epoxides, and sulfur compounds.

- 1. Recognize and prioritize the functional group (s) present.
- Identify and number the longest continuous carbon chain to give the highest ranking group the lowest possible number.
- 3. Cite the substituents (branches) alphabetically using the numbering determined above.
- 4. Recognize an classify any stereochemistry (E/Z, R/S, cis/trans, etc).

With these four pieces of information, the IU-PAC name is written using the format below. This same format applies to ALL the organic compounds.

# stereochemistriy-#-substituent-(#)-alk?n-#-suffix

spatial orientation position & id of multiple bond highest ranking group

**Mechanisms** You will need to be able to write mechanisms for reactions that follow the patterns shown below.

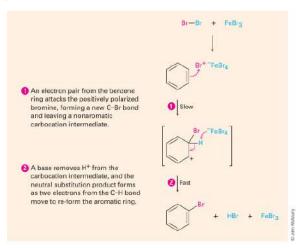



Figure 1: The mechanism of the electrophilic bromination of benzene. The reaction occurs in two steps and involves a resonance-stabilized carbocation intermediate.

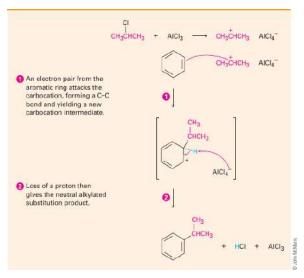



Figure 2: Mechanism of the Friedel Crafts alkylation reaction. The electrophile is a carbocation, generate by AlCl<sub>3</sub>-assisted ionization of an alkyl chloride.

**Reaction Patterns** You should know the reaction patterns for all of the below.

Bromination 
$$+ Br_2$$
  $+ Br_3$   $+ HBr$   $+ HBr$  Chlorination  $+ Cl_2$   $+ Cl_3$   $+ HCl$  Nitration  $+ HNO_3$   $+ H2SO_4$   $+ H2O$ 

Sulfonation 
$$+ SO_3$$
  $+ SO_4$   $+ SO_3H$  Friedel-Crafts alkylation  $- CH_3$ 

$$+ \text{CH}_3\text{Cl}$$
  $+ \text{HCl}_3$ 

Friedel-Crafts alcylation

$$\begin{array}{c|c} O & O \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

**Huckel's Rule** The strict version of Huckel's Rule only applies to monocyclic molecules. It is often true for polycyclic molecules as well though. There are 4 parts to the rule:

- 1. The molecule must be planar.
- 2. The molecule must consist of one ring.
- 3. The molcule must have conjugated  $\pi$ -bonds to allow electrons to flow around the ring as demonstrated by drawing resonance structures.
- 4. The number of  $\pi$ -electrons for an aromatic structure is 4n+2 and for an anti-aromatic structure it is 4n, where n is a whole number.

If parts 1-3 are violated, then it is non-aromatic. If parts 1-3 are followed, then part 4 determines whether the molecule is aromatic or anti-aromatic.

**Substituent Effects** Disubstituted benzene rings are given the following designations to describe the relationship about substituents.

ortho- (o-) 1,2- (next to each other in a benzene ring)

meta- (m) 1,3- (separated by one carbon in a benzene ring)

para- (p) 1,4- (across from each other in a benzene ring)

Different substituents can activate the ring making it more reactive. Or, deactivate it making it less reactive. Notice that all meta-directing substituents are deactivators. And, all ortho/para-directing substituents are activators except for the halogens.

Meta-directing deactivators Nitro  $(-NO_2)$ , Sulfonate $(-SO_3H)$ , Carbocyclic acid  $(-CO_2H)$ 

Ortho/Para-directing deactivators Halogens (-F, -Cl, -Br, -I)

Ortho/Para-directing activators Alkyl (e.g.  $-CH_3$ ,  $-CH_2CH_3$ ), Alcohol (-OH), Amine ( $-NH_2$ )

### Skills

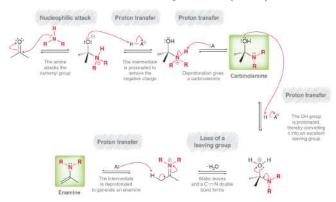
- 1. Identify aromatic and antiaromatic compounds. (Huckel's Rule)
- 2. Appreciate the chemical consequences of aromaticity.
- 3. Write the mechanisms for electrophilic aromatic substitution reactions.
- 4. Predict the products of electrophilic aromatic substitution reactions.
- 5. Relate the effects of substituents on the reactivity and regiochemistry of electrophilic aromatic substitution reactions.

### Lab Exam

- 1. Be able to differentiate between simple, vacuum, fractional and steam distillation.
- 2. Be able to describe how to setup a simple and fractional distillation.
- 3. Be able to draw the apparatus involved with simple and fractional distillations.
- 4. Be able to describe azeotropes.

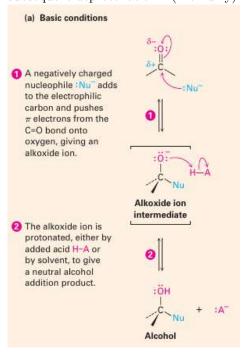
# Provided during Exam

#### **IUPAC Naming for Aromatic Compounds**


Monosubstituted Aromatic Rings Monosubstituted benzenes are systematically named in the same manner as other hydrocarbons, with -benzene as the parent name. Also, many monosubstituted benzene rings go by their common names. If the benzene ring is considered to be a substituent, then the name phenyl sometimes abbreviated as Ph.

**Disubstituted Aromatic Rings** Use ortho, meta, or para to describe the relative positions of substituents around the ring.

Trisubstituted Aromatic Rings benzenes with more than two substituents are named by choosing a point of attachment as carbon 1 and numbering the substituents on the ring so that the second substituent has as low a number as possible. The substituents are listed alphabetically when writing the name.


#### Mechanisms

Addition-elimination reaction of aldehydes/ketones The mechanism for enamine formation occurs under acidic conditions with aldehyde or ketone reacts with a secondary amine. (Klein)



(b) Acidic conditions 1 The carbonyl oxygen is protonated by an acid H-A making the carbon more strongly electrophilic. A neutral nucleophile :Nu-H adds to the electrophilic carbon. pushing the  $\pi$  electrons from the C=O onto oxygen. The oxygen becomes neutral, and the nucleophile gains the + charge. A base deprotonates the intermediate, giving addition product and regenerating the acid catalyst H-A.

Nucleophilic addition reaction of aldehydes/ketones "General mechanism of a nucleophilic addition reaction of aldehydes and ketones under both basic and acidic conditions. (a) Under basic conditions, a negatively charged nucleophile adds to the carbonyl group to give an alkoxide ion intermediate, which is subsequently protonated. (b) Under acidic conditions, protonation of the carbonyl group occurs first, followed by addition of a neutral nucleophile and subsequent deprotonation." (McMurry)



Nucleophilic substitution of a carboxylic acid derivative "The general mechanisms of nucleophilic addition and nucleophilic acyl substitution reactions. Both reactions begin with the addition of a nucleophile to a polar C=O bond to give a tetrahedral, alkoxide ion intermediate. The intermediate formed from an aldehyde or ketone is protonated to give an alcohol, but the intermediate formed from a carboxylic acid derivative expels a leaving group to give a new carbonyl compound." (McMurry)

Carboxylic acid derivative: nucleophilic acyl substitution

Acid chlorides react with water to yield carboxylic acid—the substitution of —Cl by —OH. This hydrolysis reaction is a typical nucleophilic acyl substitution process and is initiated by attack of the nucleophile water on the acid chloride carbonyl group. The initially formed tetrahedral intermediate undergoes loss of HCl to yield the product. (McMurry)

November 10, 2021 1

A reaction utilizing the enolate anion "Perhaps the most useful reaction of enolate ions is their alkylation by treatment with an alkyl halide, thereby forming a new C-C bond and joining two smaller pieces into one larger molecule. Alkylation occurs when the nucleophilic enolate ion reacts with an electrophilic alkyl halide in an  $S_N2$  reaction, displacing the halide ion in the usual way." (McMurry)

#### Reaction Patterns

**Nucleophilic addition reactions** Reduction to alchols: aldehydes for primary alchols

alchols: aldehydes for primary alchols: 
$$\stackrel{O}{\underset{CH_3}{\parallel}}$$
  $\stackrel{NaBH_4}{\underset{ethanol}{\parallel}}$   $CH_3CH_2OH$ 

ketones form secondary alcohols

$$\underset{\text{CH}_{3}}{\overset{O}{\underset{C}{\parallel}}} \overset{1)}{\overset{C}{\underset{CH_{3}}{\parallel}}} \overset{\text{CH}_{3}\text{MgX}}{\overset{O}{\underset{C}{\downarrow}}} \overset{\text{OH}}{\overset{}{\underset{CH_{3}}{\parallel}}} \overset{O}{\underset{CH_{3}}{\longleftarrow}} \overset{O}{\underset{CH_{3}}{\longleftarrow}} \overset{O}{\underset{C}{\longleftarrow}} \overset{O}{\underset{C}{\overset{C}{\longleftarrow}}} \overset{O}{\underset{C}{\overset{C}{\longleftarrow}} \overset{O}{\underset{C}{\longleftarrow}} \overset{O}{\underset{C}{\overset{C}{\longleftarrow}$$

Grignard Reagents are similar to the above except they can also link in other alkyl groups. The X can be chloride, bromide, or iodide. Aldehydes form secondary alcohols

$$\underset{\mathrm{CH}_{3}}{\overset{\bullet}{\overset{\circ}{\overset{\circ}{\square}}}} \overset{1)\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{MgX}}{\overset{\circ}{\underset{2)\mathrm{H}_{3}\mathrm{O}^{+}}{\overset{\circ}{\longrightarrow}}}} \overset{\mathrm{OH}}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\square}}}} \overset{\mathrm{OH}}{\overset{\circ}{\overset{\circ}{\square}}}$$

And, ketones form tertiary alcohols.

$$\begin{array}{c} O \\ \parallel \\ C\\ CH_3 \end{array} \xrightarrow{1)CH_3CH_2MgX} \begin{array}{c} OH \\ \parallel \\ CH_3-C-CH_3 \end{array}$$

Addition-elimination reactions A secondary amine can react under acidic conditions with a ketone to form a enamine.

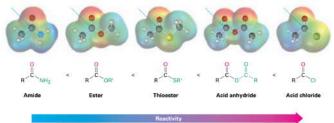
O H H H<sub>3</sub>O+

C CH<sub>3</sub>CH<sub>2</sub> CH<sub>3</sub> CH<sub>3</sub>

C CH<sub>3</sub>CH<sub>2</sub> CH<sub>3</sub>

C CH<sub>3</sub>CH<sub>3</sub> CH<sub>3</sub>

C CH<sub>3</sub>CH<sub>3</sub>


C CH<sub>3</sub>CH<sub>3</sub> CH<sub>3</sub>

C CH<sub>3</sub>CH<sub>3</sub> C

**Enolate anions** Note that X can be chloride, bromide, or iodide.

Carboxylic acid derivative "As a general rule, the more electron-poor the C=O carbon, the more readily the compound reacts with nucleophiles. Thus, acid chlorides are the most reactive compounds because the electronegative chlorine atom strongly with-

draws electrons from the carbonyl carbon, whereas amides are the least reactive compounds. ... A consequence of these reactivity differences is that it's usually possible to convert a more reactive acid derivative into a less reactive one. Acid chlorides, for example, can be converted into esters and amides, but amides and esters can't be converted into acid chlorides."



Acidity of alpha protons This table "lists the approximate pKa values of some different types of carbonyl compounds and shows how these values compare with other common acids. Note that nitriles, too, are acidic and can be converted into enolate-like anions." A lower pKa value indicates a more acidic proton.

| Table 11.1 Acid  | lity Constants for Some Carb                                           | onyl Compounds  |
|------------------|------------------------------------------------------------------------|-----------------|
| Functional group | Example                                                                | pK <sub>a</sub> |
| Carboxylie acid  | O<br>II<br>CH <sub>3</sub> COH                                         | 5               |
| 1,3-Diketone     | O O<br>     <br>CH <sub>3</sub> CCH <sub>2</sub> CCH <sub>3</sub>      | 9               |
| 3-Keto ester     | O O<br>      CH <sub>3</sub> CCH <sub>2</sub> COCH <sub>3</sub>        | 11              |
| 1,3-Diester      | О О<br>        <br>СН <sub>3</sub> ОССН <sub>2</sub> СОСН <sub>3</sub> | 13              |
| [Alcohol         | CH <sub>3</sub> OH                                                     | 16]             |
| Acid chloride    | CH <sub>3</sub> CCI                                                    | 16              |
| Aldehyde         | O<br>  <br>CH <sub>3</sub> CH                                          | 17              |
| Ketone           | O<br>  <br>CH <sub>3</sub> CCH <sub>3</sub>                            | 19              |
| Thioester        | O<br>  <br>CH <sub>3</sub> CSCH <sub>3</sub>                           | 21              |
| Ester            | CH3COCH3                                                               | 25              |
| Nitrile          | CH <sub>3</sub> C≡N                                                    | 25              |
| N,N-Dialkylamide | O<br>II<br>CH <sub>3</sub> CN(CH <sub>3</sub> ) <sub>2</sub>           | 30              |

### Skills

- 1. Identify the structures and chemical properties of carboxylic acid derivatives
- 2. Describe and analyze the consequences of the

November 10, 2021 2

acidity of protons alpha to carbonyl groups

- 3. Write mechanisms for the reactions of enolate anions and predict the products of such reactions.
- 4. Write the mechanisms for nucleophilic substitution and hydrolysis reactions of carboxylic acid derivatives.
- Write mechanisms for nucleophilic addition reactions and for addition-elimination reactions of aldehydes and ketones; and predict the products of such reactions.

### Lab Exam

- 1. Be able to draw diagrams and describe the reflux setup.
- 2. Be able to list the steps involved in performing a reflux reaction.

# Provided during Exam

IUPAC Naming for Ketones, Aldehydes, and Carboxylic acids Be able to name aldehydes (-al), ketones (-one), and carboxylic acids (-ic acid). These ending take precendence over the others that we've learned.

- 1. Recognize and prioritize the functional group(s) present.
- 2. Identify and number the longest continuous carbon chain to give the highest ranking group the lowest possible number.
- 3. Cite the substituents (branches) alphabetically using the numbering determined above.
- 4. Recognize an classify any stereochemistry (E/Z, R/S, cis/trans, etc).

With these four pieces of information, the IU-PAC name is written using the format below. This same format applies to ALL the organic compounds.

branches are cited alphabetically parent chain (homologous series)

# stereochemistriy-#-substituent-(#)-alk?n-#-suffix

spatial orientation position & id of multiple bond highest ranking group
(E, Z, R, S, D, L, d, I, +, or -)

### Show all work leading up to all responses. You may attach additional pages if needed.

(5)

- 1. Identify and explain the isomeric relationship between the following pairs of compounds.
- (a) 2,2-Dibromopentane and 2,3-Dibromopentane (3) Constitut i onal (3)

15omers CH2CH2Cl

(b) CH<sub>3</sub> — CH — CH<sub>2</sub>CH<sub>3</sub> (3)CH3 — CH — CH2CH2CH2Cl Constitutional isomers

CH<sub>2</sub>CH<sub>3</sub> (c) H<sub>3</sub>Clim C — CH<sub>2</sub>CH<sub>3</sub> H C  $\overline{C}H_3$ 

CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> (5) CH2CH2CH3 (3)(d) BrIIIII C — CH<sub>2</sub>CH<sub>3</sub> H<sub>3</sub>C ► C  $-CH_2CH_3$ 

- 2. Represent bromomethane using the following kinds (5)of diagrams:
- (a) Lewis-Dot Diagram (3)H: C: C: Br
- (b) Line-bond Diagram (3)
- (c) Condensed structural formula (3) CH2-CH2Br

the following formula: 3. Consider structural  $CH_2CH_3$ 

(a) Identify the parent alkane.

butane

(b) Identify all functional groups in the compound.

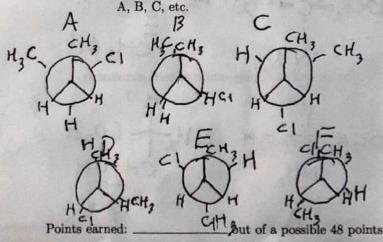
3-ethyl bromo 1-chloro

(c) Write the IUPAC name of the compound.

1-chloro-3-ethy/butare

- 4. Consider 2-bromo-4-ethylhexane:
  - (a) Identify the parent alkane.

hex are

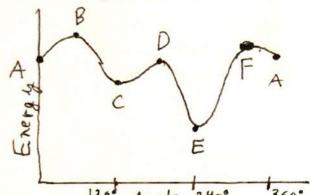

(b) Identify all functional groups in the compound.

2-bromo

4-ethy/
(c) Draw the chemical structure of the compound.

2-bromo-4-ethylhexane

- 5. Consider the bond between the 2nd and 3rd carbon of 2-chlorobutane. CH<sub>3</sub> — CH<sub>2</sub> — CHCl — CH<sub>3</sub>
  - (a) Draw the Newman projections for all possible conformations. Label them with letters such as




(1)

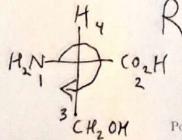
(1)

(2)

- (3) (b) Which conformers are eclipsed? Which are Eclipsed : B, D, F stygered: A, C, E
- (c) Draw a rough potential energy diagram for ro-(4) tating around the bond.



(d) Explain your reasons for identifying the highest (3) and lowest energy conformers.


> b/c the E is the lowest si de groups are largest far away from one another, (5) is the highest ble the

NHo 6. HO — CH<sub>2</sub> — CH — CO<sub>2</sub>H

Serine

(2) (a) Draw a 3D line-bond diagrams of both stereoisomers.

(2) (b) Draw Fisher projections of each steroisomer.



(c) Use the Cahn-Ingold-Prelog Rules to determine the configuration of each steroisomer (R or S).

(d) Compare and constrast the stereoisomers physical properties.

Mostly the 5 amp solutional crysth rotate polarized

(e) Compare and constrast the stereoisomer chemical activity.

Mostly The same, Creen tereobomors

- 7. Draw a reaction energy diagram for a two-step reaction with  $K_{\rm eq} > 1$ , whose second step is faster than the first step of the reaction.
  - (a) Label the parts of the diagram corresponding tor reactants, products, transition state,  $\Delta G^{\circ}$ and  $\Delta G^{*}$ .

(b) Is  $\Delta G^{\bullet}$  positive

nesative (c) Why is the second step as you have drawn it

faster than the first step? The second lower (8) 8. Predict the products of the following reaction and (6) 10. Explain the lack of side reactions for the following balance the resulting equation:

(B) CH<sub>3</sub>

(CH<sub>3</sub>

balance the resulting equation:  $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2 O$ 

i) 10. Explain the lack of side reactions for the following reaction:

CH<sub>3</sub>

CH<sub>3</sub>

CH<sub>4</sub>

CH<sub>4</sub>

CH<sub>5</sub>

CH<sub>5</sub>

CH<sub>5</sub>

CH<sub>5</sub>

CH<sub>5</sub>

CH<sub>7</sub>

Bry in less reactive than Clz ar Fz. A tertiary corbocation is more stable than a primary corrocation,

(10) 9. Predict the products and draw the mechanism for the following reaction:
CH<sub>3</sub>CH<sub>3</sub> + Br<sub>2</sub> → CH<sub>3</sub>CH<sub>2</sub> βr + Hβr

Stepl: Initiation

Br Br 2 Br.

Step 2: Propagation

CH3 CH2 Br. > CH3 CH2 + HBr

Step 3: Termination

CH3 CH2 + Br. -> CH3 CH2 Br