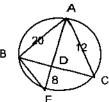
GEOMETRY

1. The bisector of $\angle A$ of $\triangle ABC$ intersects the circumcircle of $\triangle ABC$ at E, and \overline{AE} intersects \overline{BC} at D. If AB = 20, AC = 12, and DE = 8, what is the length of \overline{AD} ?



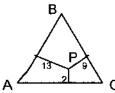
2. An equilateral triangle of perimeter 6 sits atop a square of perimeter 8, and the two share a side in common. Line segments of length x connect the two vertices of the square that aren't also vertices of the triangle to the vertex of the triangle that isn't also a vertex of the square. What is the value of x?

Express your answer in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers.

3. What is the numerical value of b for which the length of the path from A(0, 2) to B(b, 0) to C(c, 10) to D(5, 9) will be a **minimum**? Express your answer as a fraction in simplest form.

[HINT, since the shortest distance between *two* points is a straight line segment, draw $\overline{A'BCD'}$, such that its length is equal to the path \overline{AB} to \overline{BC} to \overline{CD} .]

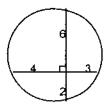
4. P is a point in the interior of equilateral triangle ABC, such that perpendicular segments from P to each of the sides of \triangle ABC measure 2 inches, 9 inches and 13 inches. Find the number of square inches in the area of \triangle ABC, and express your answer in simplest radical form.



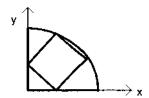
- 5. Quadrilateral Q has an inscribed circle. If the lengths of 3 consecutive sides of Q are 13, 14, and 15, what is the perimeter of Q? Express your answer in simplest form.
- Find the area of the convex quadrilateral formed by connecting the points of intersection of the graphs of xy = 20 and $x^2 + y^2 = 41$. Express your answer in simplest form.
- 7. The lengths of the bases of trapezoid T are 8 and 18. If the lower base angles of trapezoid T are complementary, what is the distance between the midpoints of the upper and lower bases of T? Express your answer in simplest form Hint: Draw segments parallel to the legs.

- 8. A circle passes through point A(3, 4) and point B(6, 8) and is tangent to the x axis at point C(k, 0). Find k and express in simplest radical form.

 (Hint: extend chord \overline{AB} .)
- 9. Two perpendicular chords intersect in circle O. The lengths of the segments of the longer chord are 6 and 2, while the lengths of the shorter chord are 4 and 3. Find the length of the diameter of circle O, and express it in simplest radical form.



- 10. Given $\triangle ABC$ with AB = 14, BC = 15, AC = 13. The length of the shortest altitude is 56. Find the sum of the lengths of the two longer altitudes of $\triangle ABC$ in simplest form.
- 11. Given $\triangle ABC$, AC = 10, BC = 12. D is on \overline{AB} , such that $\overline{CD} \perp \overline{AB}$. Point E lies on \overline{CD} , such that AE = 4, EB = x. Compute x.
- 12. The lengths of the diagonals of a rhombus are 16 and 30. Compute the length of an altitude drawn from a vertex to the opposite side.
- 13. As shown in the diagram below, a square is inscribed in a quadrant of a circle with a radius of 5 inches. Find the number of square inches in the area of the square. Express your answer in simplest form.



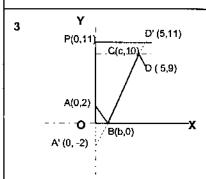
Solutions:

AD = x, Triangles ACD and AEB are similar so

$$x:20 = 12:x+8$$

$$x^2 + 8x - 240 = 0$$

 $(x - 12)(x + 20) = 0$
 $x = 12$ reject $x = -20$



By reflections, the length of $\overline{A'BCD'}$ is equal to the length of the path \overline{AB} to \overline{BC} to \overline{CD} .

$$\Delta A'OB \sim \Delta A'PD'$$

So
$$\frac{2}{b} = \frac{13}{5}$$
 thus $b =$

5).

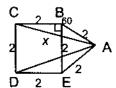
A possible quadrilateral is shown

Sides of quadrilateral Q are tangent segments to the inscribed circle. So a = 7 and b = 7

Perimeter is 13 + 14 + 15 + 14 = 56

Theorem: For any quadrilateral with an inscribed circle, the sum of the lengths of each pair of opposite sides of the quadrilateral is the same.

2.



$$AC^{2} = 2^{2} + 2^{2} - 2 \cdot 2 \cdot 2 \cos 50^{\circ}$$
$$= 4 + 4 - 8 \left(-\frac{\sqrt{3}}{2} \right) = 8 + 4\sqrt{3}$$

$$AC = \sqrt{8 + 4\sqrt{3}} = \sqrt{8 + 2\sqrt{12}} = \sqrt{6 + 2 + 2\sqrt{6 \cdot 2}}$$

$$AC = \sqrt{6} + \sqrt{2}$$

$$AC = \sqrt{6} + \sqrt{2}$$
 Note: $(\sqrt{6} + \sqrt{2})^2 =$

$$\sqrt{6}^2 + 2\sqrt{6}\sqrt{2} + \sqrt{2}^2 = 6 + 2\sqrt{12} + 2 = 8 + 4\sqrt{3} = AC^2$$

4)

Area triangle APB = (1/2)(13)s

Area triangle BPC = (1/2)(9)s

Area triangle APC = (1/2)(2)s

Area triangle ABC =(24/2)s=12s

Area of an equilateral \triangle ABC = $\frac{s^2}{4}\sqrt{3}$ =12s

$$s = 16\sqrt{3}$$

Area
$$\triangle ABC = \frac{s^2}{4} \sqrt{3} = \frac{(16\sqrt{3})^2}{4} \sqrt{3} = 192\sqrt{3}$$

6)
$$x^2 + (20/r)^2 = 41$$
 or

$$x^2 + 400$$

So
$$x^4 - 41x^2 + 400 = 0$$
 or

$$(x^2 - 16)(x^2 - 25) = 0$$

Thus $x = \pm 4$, $x = \pm 5$ giving the solutions:

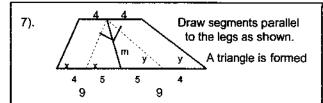
(4, 5), (-4, -5), (5, 4),and (-5, -4)

These form a rectangle, whose dimensions are:

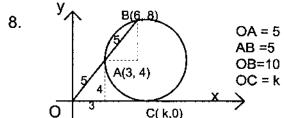
$$d_{(5,4)(4,5)} = \sqrt{(5-4)^2 + (4-5)^2} = \sqrt{2}$$

$$d_{(5,4)(-4,-5)} = \sqrt{(5-(-4))^2 + (4-(-5))^2} = \sqrt{162}$$

The area is therefore $(\sqrt{2})(\sqrt{162}) = \sqrt{324}$ or 18



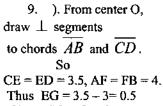
Since the base angles are complementary, x + y = 90, so the triangle formed is a rt Δ and the line joining the midpoints of the bases is also the median to the hypotenuse of this right triangle. Thus segment m is 5 since the length of the median of a rt. $\Delta = \frac{1}{2}$ of the hypotenuse so it is $\frac{1}{2}(10) = 5$



 $(secant)(external segment) = (tangent)^2$ Since

(OB)(OA) = (OC)²

$$k^2 = (10)(5) = 50$$
,
 $k = 5\sqrt{2}$



Since EG = OF, OF = 0.5Also FG = OE = 4 - 2 = 2

$$(AO)^2 = (\frac{1}{2})^2 + 4^2$$

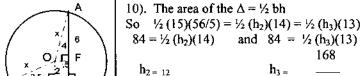
 $(AO)^2 = (\frac{1}{2}) + 16 = 65/4$

$$(AO)^2 = (1/4) + 16 = 65/4$$
 So $AO = \sqrt{65}/2$

Thus the Diameter = $2(AO) = \sqrt{65}$

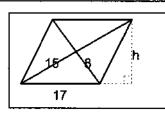
Alternatively: $(CO)^2 = (\frac{7}{2})^2 + 2^2$; $(CO)^2 = (49/4) + 4 = 65/4$, and thus $CO = \sqrt{65}/2$,

Diameter =
$$2(CO) = \sqrt{65}$$



Thus
$$h_2 + h_3 = 12 + \frac{168}{13}$$

$$= \frac{156}{13} + \frac{168}{13} = \frac{324}{13}$$



11. Using the Pythagorean Thm:

$$10^{2} - w^{2} = 12^{2} - y^{2}$$
and
$$4^{2} - w^{2} = r^{2} - y^{2}$$

 $4^2 - w^2 = x^2 - y^2$

Subtracting these equations. we get

$$10^{2} - 4^{2} = 12^{2} - x^{2}$$
So $x^{2} = 60$

$$x = \sqrt{60} = 2\sqrt{15}$$



Since the diagonals of a rhombus bisect each other and are \perp , we have an 8, 15, 17 rt. Δ . Thus the sides of the rhombus are 17. The area of the rhombus = $\frac{1}{2} d_1 \cdot d_2 = \frac{1}{2} (30)(16) = 240$ and

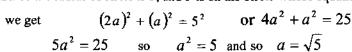
The area of the rhombus =
$$b h = 17h$$

So $17h = 240$ and $h = 240/17$

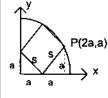
13. Area of the square = s^2

Since the inscribed figure is a square of side s, the coordinates of P, a vertex of the square (Notice, in locating P, two congruent isosceles right triangles are formed.)

Since the radius of circle is 5, and P is on the circle whose equation is $x^2 + y^2 = 5^2$



Since
$$s = a\sqrt{2}$$
 the area of the square, $s^2 = (a\sqrt{2})^2 = 2a^2$.



EXTRA ON QUESTION #2

Solving we get:

$$AC^{2} = 2^{2} + 2^{2} - 2 \cdot 2 \cdot 2 \cos 50^{\circ}$$

$$= 4 + 4 - 8 \left(-\frac{\sqrt{3}}{2} \right) = 8 + 4\sqrt{3}$$

$$AC = \sqrt{8 + 4\sqrt{3}}$$

EASY!

BUT HOW DO WE GET OUR ANSWER IN THE DESIRED FORM?

Express your answer in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers.

WORKS BACKWARDS (ALWAYS A VIABLE STRATEGY) FROM THE DESIRED FORM UNTIL YOU SEE A CONNECTION!

AC =
$$\frac{\text{Desired}}{\sqrt{a} + \sqrt{b}}$$

$$AC = \sqrt{8 + 4\sqrt{3}}$$

$$(AC)^{2} = \left(\sqrt{a} + \sqrt{b}\right)^{2}$$

$$= \left(\sqrt{a}\right)^{2} + 2\sqrt{a}\sqrt{b} + \left(\sqrt{b}\right)^{2}$$

$$= a + 2\sqrt{ab} + b$$

$$= 8 + 2\sqrt{12}$$
Connection
?

YES!
$$a+b=8, ab=12$$

So our desired a and b values must be 6 and 2

And

$$AC = \sqrt{6} + \sqrt{2}$$

Note:
$$(\sqrt{6} + \sqrt{2})^2 = \sqrt{6}^2 + 2\sqrt{6}\sqrt{2} + \sqrt{2}^2 = 6 + 2\sqrt{12} + 2 = 8 + 4\sqrt{3} = AC^2$$

Try another:

Express $\sqrt{13+4\sqrt{10}}$ in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers.

	3-	