Complete the following worksheet using the Nuclear Energy Power Point. [Page #s in the PPT are indicated to the right of each question]

1)	Distinguish between c	nemistry and phy	sics in r	egard to which p	part of the atom is stre	essed. [pp 3-4]	
2)	The nucleus is made u	p of	and	1	_ (nuclear particles).	[p 5]	
3)	Isotopes contain the sa	nme number of _		but a diffe	rent number of	[p 6]	
4)	Give two isotopes of the helium atom using symbols and numbers. Label the atomic number and mass for both isotopes in the appropriate places. [pp 6 - 7]						
5)	Circle the properties that a. mass b. chemic			•			
6)	How many protons are in ${}_{6}C^{14}$? How many neutrons? [pp 8]						
	How radioactive is a gram of carbon in a living plant?beta emissions/minute [p 9]						
8)	What is the half-life of Carbon 14 years? How long would it take for a sample to drop to one half of its present amount? years One quarter of its present amount? years [pp 12 - 13]						
9)	If our body contains 4 grams (TIPS?) [p 14]	00 grams of Carl	oon 14, l	now many years	would it take to only	have 25	
10)	Complete the table b	pelow showing n	uclear ra	diation particles	. [p 16-18]		
	Type of Radiation	Name of Par	ticle	Travel Range	Outside Forces		
11)) What type of radiati	on is given off by	y radium	and radon as it	transmutates into lead	1 ? [p 19]	
12)) What famous scient did she find the radi		lium and	l won the Noble	Peace Prize in Physic	es? Where	

13)	What happens when alpha particles come near positively charged particles? When they come near negatively charged particles? [p 21]					
14)	What potentially harmful element accumulates in house basements as a result of radium decaying? [pp 22 - 24]					
15)	What is the term used for nuclear particles which possess only the nucleus of the atom without its electrons? [pp 26 - 28]					
16)	Compare the amount of energy released in a nuclear reaction to a chemical reaction. [p 31]					
17)	What does each symbol in the equation: $E = mc^2$ represent ("m" is not simply "mass")? [pp 32-35] $E \rightarrow m \rightarrow c \rightarrow$					
18)	Write the symbols and names for the two isotopes that work well to produce energy by nuclear fission? $[p\ 39]$					
	a. b.					
19)	In order to split the Uranium 235 nucleus (fission), a bombards it and begins a reaction. [pp 40 - 41]					
20)	To keep the neutrons from just bouncing off the Uranium 235 nucleus, a is used to slow down the neutrons before they make impact. [p 42]					
21)	American nuclear power reactors use as a moderator. The Chernobyl reactor in Russia used as a moderator, which led to disaster. [p 43]					
22)	Name three important components of electricity production using nuclear fission. [pp 44 - 45]					
	a. b. c.					
23)	can be used as a moderator, coolant and storage material for nuclear fuel rods. [p 47]					
24)	Only% of Uranium on earth is U^{235} . It takes% of U^{235} to make a nuclear reactor produce nuclear fission. It would take% to make a nuclear bomb. [p 50]					
24)	A "breeder" reactor can "enrich" abundant U ²³⁸ into, a highly fissionable isotope often used to make nuclear weapons. [pp 52 - 55]					
25)	Presently nuclear is stored temporarily on-site, but may eventually be permanently stored at a facility like mountain in Nevada. [pp 56 – 58]					