
ARRAYS

Do Now:

Write a program that reads in the grades
from your last test. The program should
find the average of the grades and display
the class average. The program should
then print the names of those students
above the class average. The program
should ONLY read the file ONCE!!

The text file is on my website under Arrays

Example Code
Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

Dim student1 As String, score1 As Double
Dim student2 As String, score2 As Double
Dim student3 As String, score3 As Double

. . .
Dim student10 As String, score10 As Double
Dim sr as IO.Streamreader=IO.File.OpenText(“grades.TXT”)

student1 = sr.ReadLine
score1 = CDbl(sr.ReadLine)
. . .

‘Compute the average grade/display the namesof
those above the average.

7.1 Creating and Accessing Arrays
 Declaring an Array Variable
 The Load Event Procedure
 The GetUpperBound Method
 ReDim Statement
 Using an Array as a Frequency Table

 A variable (or simple variable) is a name to which
Visual Basic can assign a single value.
 An array variable is a collection of simple variables of

the same type to which Visual Basic can efficiently assign
a list of values.

Dim arrayName(n) as varType

Dim student(29) As String
Dim score(29) As Double

Upper bound of subscripts in the array
Array name Data type

Putting Values into an Array
student(0) = “Chris"

subscript

Read: "student sub zero equals Chris"

Which means that the string “Chris" is being

stored at the first location in the array called

student… because all arrays begin counting at 0.

Array Terminology

 Dim arrayName(n) As DataType

 0 is the "lower bound" of the array

 n is the "upper bound" of the array – the last available
subscript in this array

 The number of elements, n + 1, is the size of the array

Example 1: Form

mtxtNumber

txtWinner

Example 1
Private Sub btnWhoWon_Click(...) _
 Handles btnWhoWon.Click
 Dim teamName(3) As String
 Dim n As Integer
 'Place Super Bowl Winners into the array
 teamName(0) = "Packers"
 teamName(1) = "Packers"
 teamName(2) = "Jets"
 teamName(3) = "Chiefs"
 'Access array
 n = CInt(txtNumber.Text)
 txtWinner.Text = teamName(n - 1)
End Sub

Example 1: Output

Initializing Arrays
 Arrays may be initialized when they are created:

Dim arrayName() As varType = {value0,_
value1, value2, ..., valueN}

 declares an array having upper bound N and assigns value0 to
arrayName(0), value1 to arrayName(1), ..., and valueN to
arrayName(N).

The value of arrayName.GetUpperBound(0)

is the upper bound of arrayName().

Dim teamName() As String = {"Packers", "Packers",_
"Jets", "Chiefs"}

txtBox.Text = CStr(teamName.GetUpperBound(0))

Output: 3

GetUpperBound Method

The size of an array may be changed after it has been created.

 ReDim arrayName(m)

where arrayName is the name of the already declared array and
m is an Integer literal, variable, or expression, changes the
upper bound of the array to m.

ReDim Statement

Preserve Keyword

 ReDim arrayName(m)
resets all values to their default. This can be prevented with the

keyword Preserve.

ReDim Preserve arrayName(m)
resizes the array and retains as many

values as possible.

Out of Bounds Error
The following code references an array element
that doesn't exist. This will cause an error.

Dim trees() As String = {"Sequoia", _
 "Redwood", "Spruce"}
txtBox.Text = trees(5)

16

Passing Arrays to Procedures

 An array declared in a procedure is local to that procedure
 An entire array can be passed to a Sub or Function

procedure
 The call statement uses the name of the array without

parentheses.
 The header of the Sub of Function procedure uses the

name with empty set of parentheses.

17

Example 4

 This example uses a Function procedure to add up the
numbers in an array. The GetUpperBound method is used to
determine how many numbers are in the array.

18

Example 4

Private Sub btnCompute_Click(...) Handles btnCompute.Click
 Dim score() As Integer = {85, 92, 75, 68, 84, 86, _
 94, 74, 79, 88}
 txtAverage.Text = CStr(Sum(score) / 10)
End Sub

Function Sum(ByVal s() As Integer) As Integer
 Dim total As Integer = 0
 For index As Integer = 0 To s.GetUpperBound(0)
 total += s(index)
 Next
 Return total
End Function

