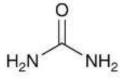
Organic Chemistry - Chapter 5 Nomenclature

The "art" of the IUPAC system in organic chemistry Because doesn't that look like fun?!?

What is IUPAC and why do we "need" it?


- In 1892, as the number of known molecules grew, chemists decided that a SYSTEMATIC naming system was needed
- IUPAC system International Union of Pure and Applied Chemistry
- We can learn the IUPAC system instead of having to memorize a common name for every molecule



PURE AND APPLIED CHEMISTRY

Many organic compounds have common names

H N H

Formic acid
Isolated from ants
and named after the
Latin word for ant, formica

Urea Isolated from urine

Morphine
A painkiller named after
the Greek God of dreams,
Morpheus

Barbituric acid

Adolf von Baeyer named this
compound in honor of a
woman named Barbara

 Some common names have been used for hundreds of years and are still frequently used.

How does it work?

There are 5 parts to every name:

Stereoisomeris	Substituents	Parent Chain	Unsaturation	Functional
m				Groups

- **Stereoisomerism** provides info about double bonds (cis/trans or E/Z) as well as stereocenters (R/S learned later)
- Substituents groups coming off of the main parent chain (like branches)
- Parent chain the main chain of carbons
- Unsaturation identifies all single bonds or if there are any double or triple bonds present
- Functional Group the group of atoms for which the molecule is named

*We will begin at the end of the name and work our way back through all 5 parts!

But first, let's see an example on the next slide

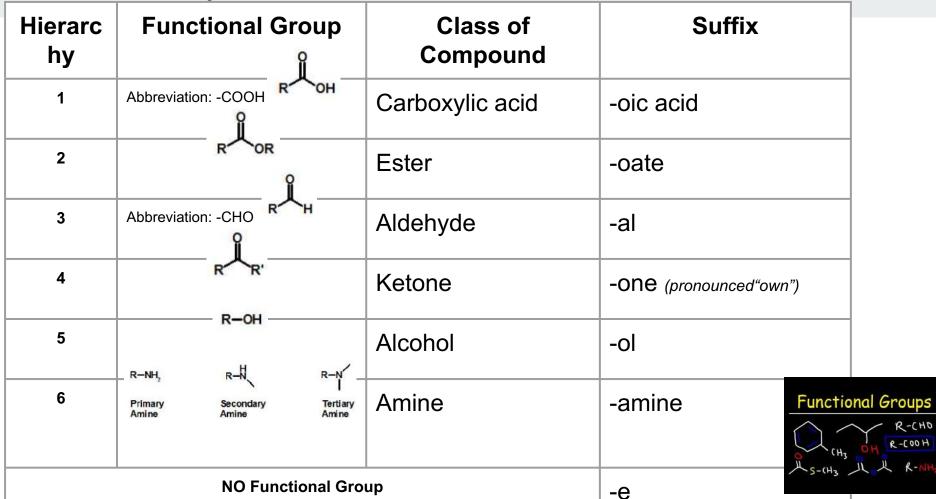
Example!

Imagine trying to name this compound so that EVERY time that name was used someone knew exactly what it was.

EX: "You know it's got a double bond with a CI and an OH"

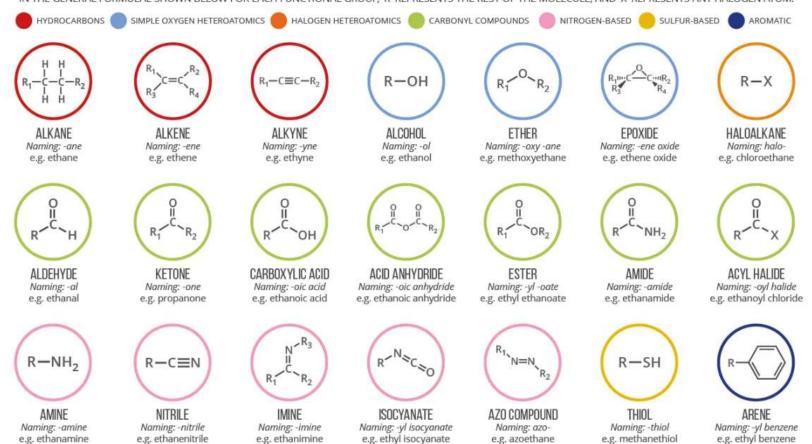
That would not be very effective!

IUPAC Name: Z-3-chloropent-2-en-1-ol

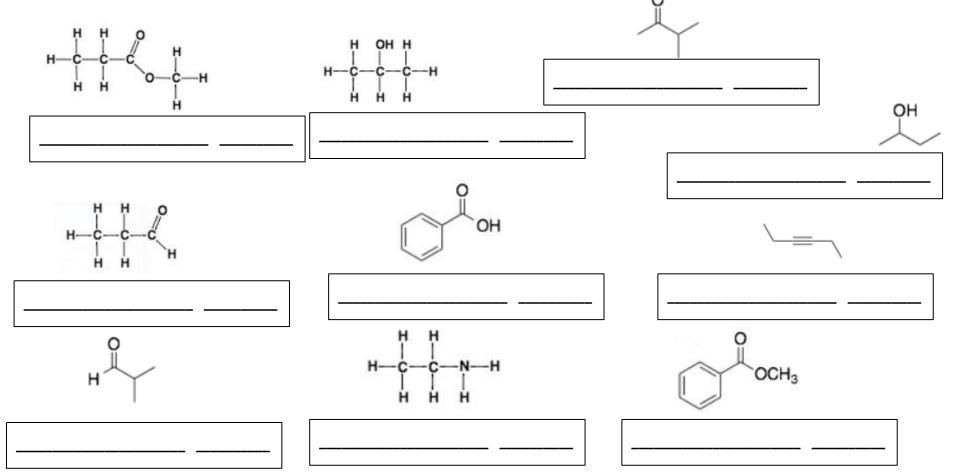

Stereoisomeris m	Substituents	Parent Chain	Unsaturation	Functional Groups
Z	3-chloro	pent	2-en	1-ol

Section 5.1: Functional Groups

	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
--	-----------------	--------------	--------------	--------------	-------------------

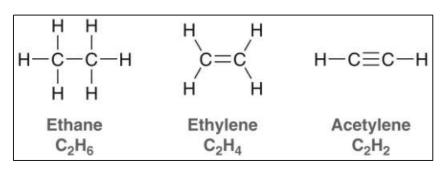

- <u>Functional group</u> specific arrangements of atoms that have specific characteristics for reactivity
 - EX: OH groups that are attached to a molecule all react similarly and are collectively called "alcohols"
 - Most textbooks are arranged according to functional groups so their common reactions can be studied
 - There are dozens of functional groups, but we will focus on 6 (and probably see some extras!)
- Each functional group has a specific suffix
- They occur in a hierarchy only one functional group can get the "suffix" portion of the name
 - Additional functional groups are named in the substituent section of the name
 - Multiple functional groups: use di, tri, tetra, penta, hexa, etc... before suffix EX: 2 alcohols = "-diol"

Functional Groups In Order



Additional "Functional" groups (some on the image are not technically FG's)

FUNCTIONAL GROUPS ARE GROUPS OF ATOMS IN ORGANIC MOLECULES THAT ARE RESPONSIBLE FOR THE CHARACTERISTIC CHEMICAL REACTIONS OF THOSE MOLECULES. IN THE GENERAL FORMULAE SHOWN BELOW FOR EACH FUNCTIONAL GROUP, 'R' REPRESENTS THE REST OF THE MOLECULE, AND 'X' REPRESENTS ANY HALOGEN ATOM.


5.1 Practice - Identify the functional group and the suffix that would be used

Section 5.2: Unsaturation

Stereoisomerism Substituents Parent	Chain Unsaturation Functional Groups
-------------------------------------	--------------------------------------

- <u>Unsaturation</u> this region describes if there are any **carbon-carbon** double or triple bonds present in the molecule (or all single bonds)
 - Having multiple bonds means the carbons will be attached to fewer H atoms (therefore the carbons are NOT "saturated")
 - Formula "trick":
 - All single bonds: $C_xH_{(2x+2)}$
 - Double bond means 2 fewer H's: $C_xH_{(2x)}$
 - Triple bond means 4 fewer H's: $C_xH_{(2x-2)}$

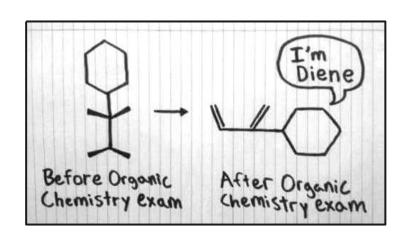
Note: These multiple bonds are separate from ones we might see in functional groups! Those are not C-C multiple bonds and are already accounted for by using the functional group suffix!

Section 5.2: Unsaturation

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

Pentane Pentene Pentyne

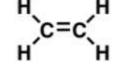
What "Unsaturation" Tells Us:

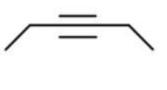

- All single bonds = "an"
- Double bond = "en" (pronounced "een")
- **Triple bond** = "yn" (pronounced "ine")

Things to notice:

- 1. They all have "pent"
- 2. They all end with "e"
- 3. Triple bonds are drawn linear
- 4. None have substituents
- 5. None have stereoisomerism

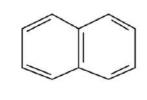

Section 5.2: Multiple double and/or triple bonds

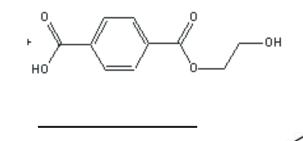

- For multiple double or triple bonds we use these prefixes with the unsaturation term:
 - o di = 2
 - \circ tri = 3
 - \circ tetra = 4
 - penta = 5
 - hexa = 6
 - (would continue with hepta, octa, nona, deca...)
 - EXAMPLES:
 - two double bonds = "-dien-"
 - three double bonds = "-trien-"
 - five triple bonds = "-pentayn-"

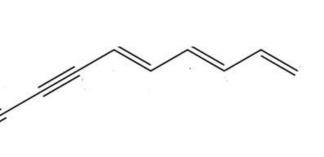


 NOTE: double bonds always get listed first! We must be explicit in addressing how many double and triple bonds are present. (everything else is assumed to be single bonds)

Section 5.2: Practice with Unsaturation







Sect	ion 5.3: l	Parent C	hain	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
_	Parent Chain he longest co	•					Longest Chain of C's	Parent Chain Name
	nclude the fo						1	meth
		ctional group		, , , , , , , , , , , , , , , , , , , ,			2	eth
	2. Dou	ble bond					3	prop
	3. Tripl	e bond					4	but
Note	if the carbor	n atoms are ir	naring v	we add the	term "cv	'clo"	5	pent
	ng of 6 C's =		· · · · · · · · · · · ·		corrii cy		6	hex
		,	\triangle				7	hept
4								

Cyclobutane

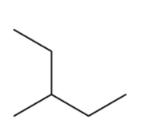
Helpful Saying:

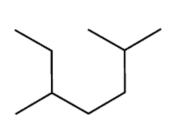
ing:

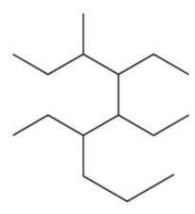
Cyclopropane

"<u>My Evil Puppy Bites People Horribly Hard On Nasty Days!"</u>

5 pent
 6 hex
 7 hept
 8 oct
 9 non
 10 dec

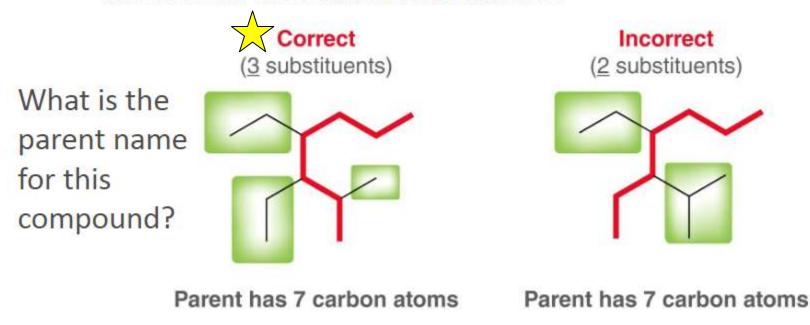

Cyclopentane


Section 5.3: How to find the Parent Chain (no FG)

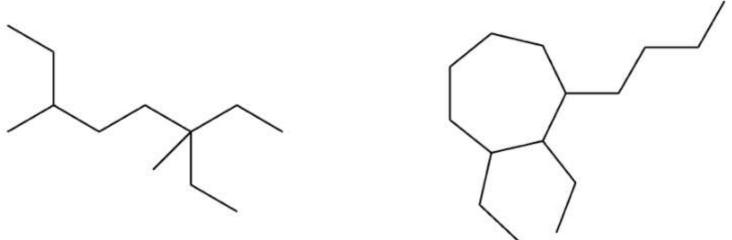

Pick a "starting" point and begin counting as many carbons in a row as you can (it can go L to R, down to up, the direction doesn't matter!)

- Just don't "backtrack" over a carbon
- **EX**: choose the parent chain for each

NUMBER OF CARBON ATOMS	PARENT
11	undec
12	dodec
13	tridec
14	tetradec



Section 5.3: What about ties?


 If there is more than one possible parent chain, choose the one with the most substituents attached

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

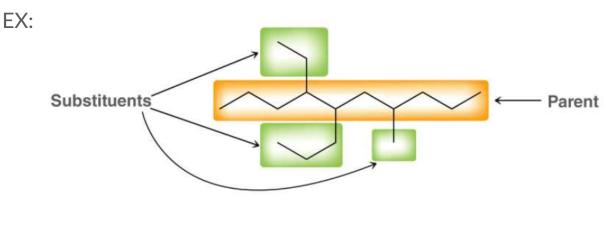
Section 5.3: How to find the Parent Chain (no FG)

Give the parent name for the following compounds

 The parent name may <u>NOT</u> include carbons that are both in a ring and outside a ring.

Section 5.3: Practice Finding the Parent Chain

Make sure you parent chain includes functional groups, then multiple bonds, if present


Section 5.4: Naming Substituents

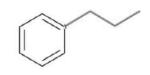
Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

<u>Substituents:</u> everything that is connected to the parent chain that is NOT covered under the main functional group suffix

Alkyl Substituents: these are branches of carbon groups (single bonded)

- Add "yl" to the same terminology we would use for the parent chain

Number of C's in Sub.	Substituent name
1	methyl
2	ethyl
3	propyl
4	butyl
5	pentyl
6	hexyl
7	heptyl
8	octyl
9	nonyl
10	decyl

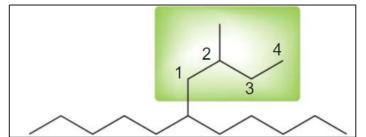

Section 5.4

Alternative ways to list/show substituents:

- **Methyl** groups can be shown as:
 - EX:

- **Ethyl** groups can be shown as:
 - EX:

- **Propyl** groups are usually drawn out, but could be written as "-Pr"
 - EX:

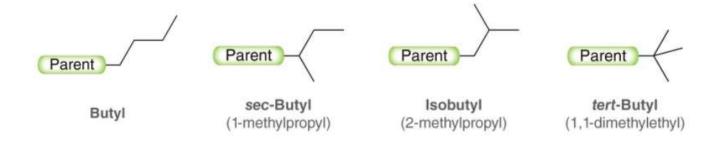


Section 5.4

How to name "Complex Branched" Substituents: This is a little more than what we will get to in our HS organic course, but is most-definitely on the "college" plate! I just want you to have seen this!

We will only use some of the "common names for branched substituents" from the following slide.

- 1. Number the longest carbon chain WITHIN the substituent. Start with the carbon directly attached to the main chain
- 2. Name the "parent chain" of the substituent (in this case butyl)
- 3. Name and Number the substituent's side group (in this case 2-methyl)
- 4. The name of the whole substituent is (2-methylbutyl)


Section 5.4

Common Names for "Branched" Substituents: You WILL need to know these common names!

- 3 Carbon Group Variations
 - EX:

- 4 Carbon Groups Variations
 - EX:

Section 5.4 - How to name functional groups as substituents

*When a molecule has <u>more than one type</u> of functional group, the lower-hierarchy functional group will be "picked up" in this portion of the name

Functional Group Name	How it is Named as a Substituent
aldehyde	-aldo-
ketone	-keto-
alcohol	-hydroxy-
amine	-amino-

Section 5.4 - How to name Halogens as substituents

Halogens = group 17 elements

(Basically - add "o" to the end of the halogen's root name)

Halogen	How it is Named as a Substituent	
F	-fluoro-	
CI	-chloro-	
Br	-bromo-	
	-iodo-	

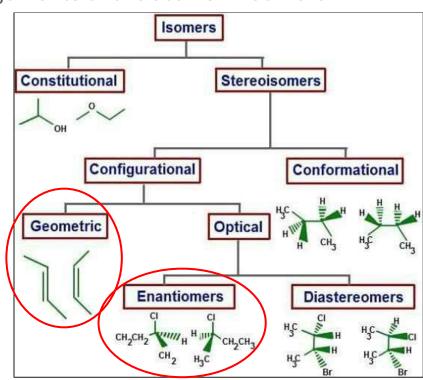
Section 5.4 Final Points

- For multiple substituents of the <u>same kind</u> we use the same prefixes as we did previously:
 - di, tri, tetra, penta, hexa, hepta, etc...
- Each and every substituent needs to be numbered so that we know where it goes on the parent chain (more on that once we cover stereoisomerism)
- **Substituents should be listed in ABC order** (from the root of their name, more info later)

Section 5.4 Practice

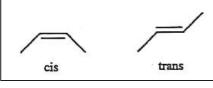
• For each molecule, list out all of the info we have learned so far about it

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
о но				
				_

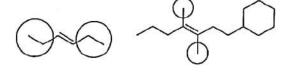


Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

<u>Stereoisomerism</u> is the first part of many names but may not always be present! It describes the different spatial (3D) arrangements of the atoms in isomers

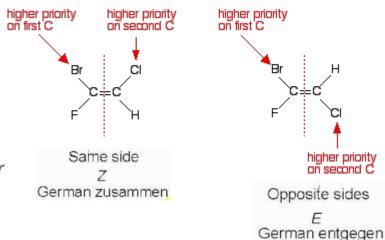

<u>Isomers</u>: atoms that have the same chemical formula (numbers & types of atoms) but are arranged differently

*Many different types, we will be looking at geometric isomers for double bonds and enantiomers


Stereoisomerism Substitu	nts Parent Chain	Unsaturation	Functional Groups
--------------------------	------------------	--------------	-------------------

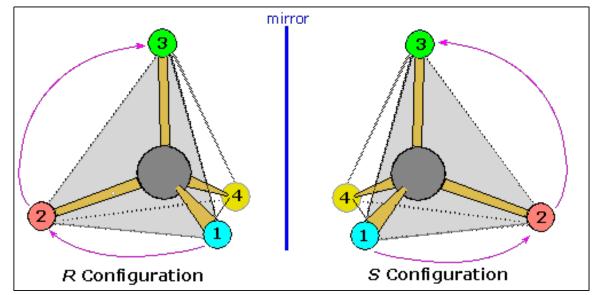
- 1. Double bonds can have alternate arrangements/configurations
 - a. Due to overlapping p-orbitals "lock" the atoms in place (unlike single bonds which can freely rotate)
 - b. To use **cis** or **trans**, they must have identical groups **on either side** of the double bond that can be compared

Examples: $\sqrt{\underline{}}$



c. The two groups can be hydrogen:

EXCEPTIONS to the cis/trans terminology:


- A. Cis/trans has limitations. What if you don't have 2 identical groups opposite of one another?
 - We use E for "Epposite side"
 - Or Z for "Zame side" of groups.

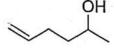
- This method works for ALL double bonds
- *We learn the priorities of these in a later chapter

- A. If there are 2 identical groups attached to the *same C atom*
 - o EX:

- **2. Stereocenters** (carbons attached to 4 diff. "things" we will learn about this later. I'll tell you if it is R or S for now, just get the general idea of it below)
 - Uses R for "right handed" rotation (clockwise)
 - Uses S for "left handed" rotation (counter-clockwise)

Section 5.5 Practice

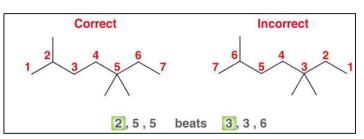
Determine if the double bonds are cis, trans, or neither


$$H_3C$$
 COOH H_3C $C=C$ H COOH

$$C = C$$
 $D = C$
 $D =$

Section 5.6 Numbering

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups
--


- Numbering applies to ALL parts of the name!
- When numbering the parent chain, we use the same hierarchy as we did to pick it:
 - Functional group
 - Double bond
 - Triple bond
- Make sure the "lower number" option give priority in the order above

*If NONE of them are present, simply number so that the total of the substituents has the lowest value

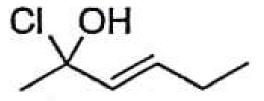
Section 5.6 How to place numbers in names

- General Number "Rules"
 - Everything needs numbered!
 - Except a functional group or double bond if it is on the **first carbon only**
 - If you have multiples of a part of the name, then EACH needs numbered
 - EX: "-2,4,6-trimethyl"
 - Use (hyphen)between #'s and letters
 - Use, (comma) between multiple numbers
- Functional Group place the number in front of the suffix
- Unsaturation use only the lower of the carbon's number on the parent chain

- Substituents place directly in front of each substituent
- Stereoisomerism if more than one double bond we have to indicate each with a number. If there is only one double bond we can just put *cis* or *trans* / E or Z out front. Stereocenters, (R or S) are placed in parentheses.

Worked-out Examples to reference

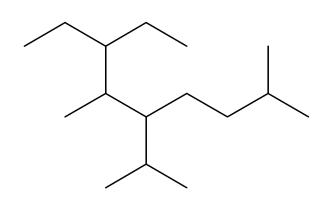
$$\equiv H_3C \xrightarrow{1} \xrightarrow{4} CH_3 \qquad 4-isopropyl-1-methylcyclohexene}$$


$$\equiv CH_3 \xrightarrow{C} CH_3 \qquad 1-cyclobutyl-3-methyl-1-butyne}$$

5,5-dichloro-2-vinyl-1,3,6-cyclooctatriene

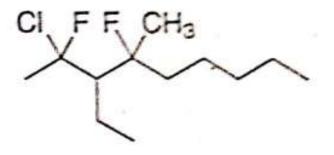
Section 5.6 Practice - Putting it all together

1. Name the molecule!


Stereoisomerism Substituents Parent Chain	Unsaturation Functional Groups
---	--------------------------------

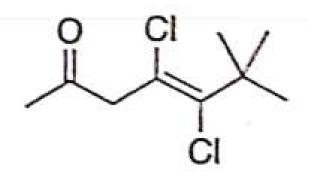
Section 5.6 Practice - Putting it all together

2. Name the molecule!


Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

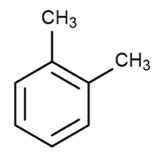
Section 5.6 Practice - Putting it all together

3. Name the molecule!


Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.6 Practice - Putting it all together

4. Name the molecule!


Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.6 Practice - Putting it all together

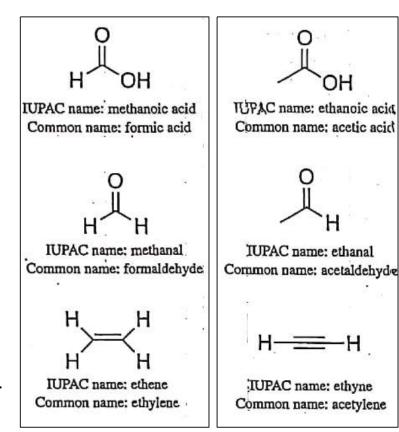
5. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Practice with "rings" of carbons!



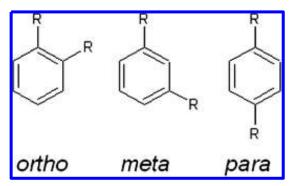
Section 5.7 Common Names


 Most of these names are so common, you may never hear anyone use their IUPAC name! It is important to familiarize yourself with them.

SPECIAL NOTE ON ETHERS:

 The common way to name ethers is to place the group on "either" side of the O is named as a substituent before the term "ether"

 The IUPAC method would be to treat the O like a C and use the term -oxa. So diethyl ether would be 3-oxapentane (but no one calls it that!)



5.7 Common names of "di-substituted" Rings!

Sometimes Rings use some special terminology. You are not required to know this for HS O-Chem, but


you will for college!

*You may see this on Nomenclature WS #5

Conjugated double bond cyclohexanes are also called **benzene** rings

Section 5.8 Going from a Name to a Structure

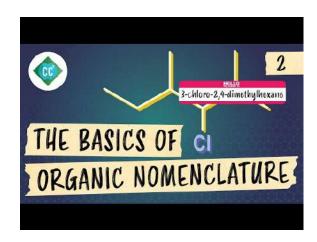
Draw out the molecule! (MUCH EASIER!)

1. 2,4-dimethylcyclopent-1-ene *Note you could also see: 2,4-dimethylcyclopentene

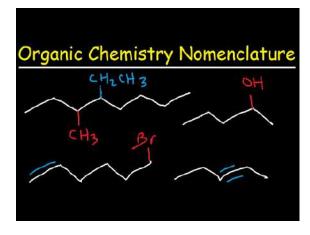
Stereoisomerism Substituents Parent Chain	Unsaturation Functional Groups	
---	--------------------------------	--

Section 5.8 Going from a Name to a Structure

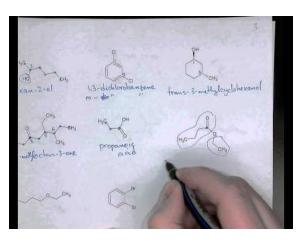
Draw out the molecule! (MUCH EASIER!)

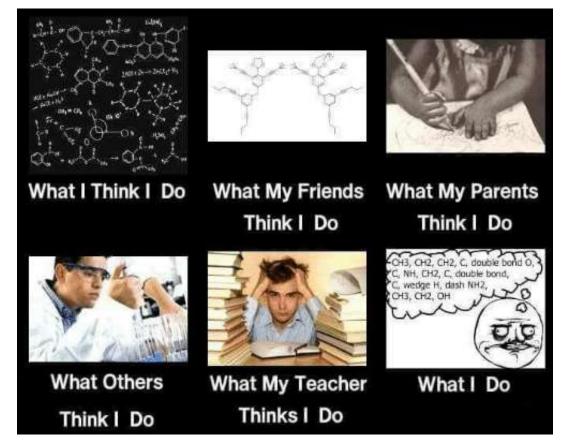

2. *trans*- 6-hydroxy-3,4-dimethyloct-3-enal

Stereoisomerisr	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------


Helpful Video Resources!

Professor Dave Explain has MANY videos on his playlist for various parts of organic nomenclature.


<u>CLICK HERE</u> to check out the list!



CONGRATULATIONS! YOU HAVE REACHED THE END OF CHAPTER 5!!!!!

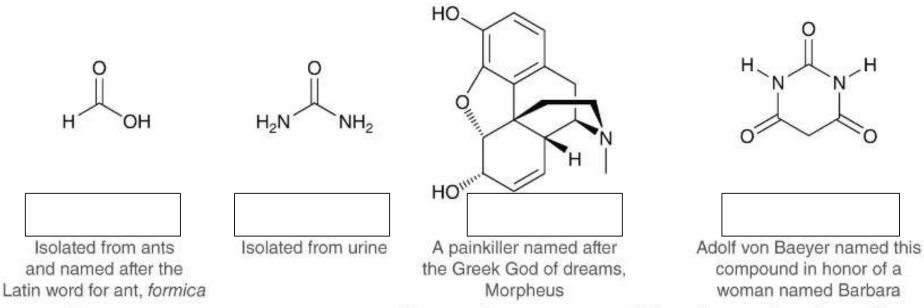
Student Version of Slides to Follow

Organic Chemistry Chapter 5 - Nomenclature Notes

$$\begin{array}{c} & & & \\ & &$$

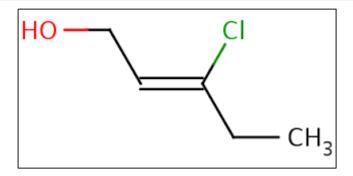
The "art" of the IUPAC system in organic chemistry Because doesn't that look like fun?!?

What is IUPAC and why do we "need" it?


- In as the number of known molecules grew, chemists decided that a naming system was needed
- IUPAC system –
- We can learn the IUPAC system instead of having to memorize a common name for every molecule

PURE AND APPLIED CHEMISTRY

Many organic compounds have common names



 Some common names have been used for hundreds of years and are still frequently used.

How does it work?

The	re are 5 parts	to every name:			
•		m - provides info abo (R/S - lear		(cis/trans o	or E/Z) as well as
•	Substituents - g	5			(like branches)
•	Parent chain - t	the			
•	Unsaturation - bonds present	identifies all :	bonds or if there	are any	or
•	Functional Gro	<i>up</i> - the	offor	which the mole	cule is named
	*We will begin	at the of the But first, let's s	e name and work our see an example on th	-	gh all 5 parts!

Example!

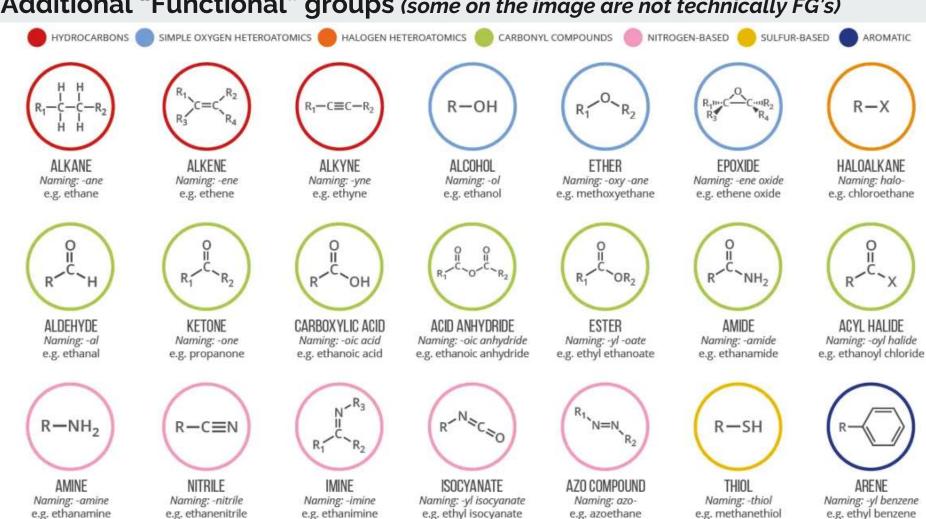
Imagine trying to name this compound so that EVERY time that name was used someone knew exactly what it was.

EX: "You know it's got a double bond with a CI and an OH"

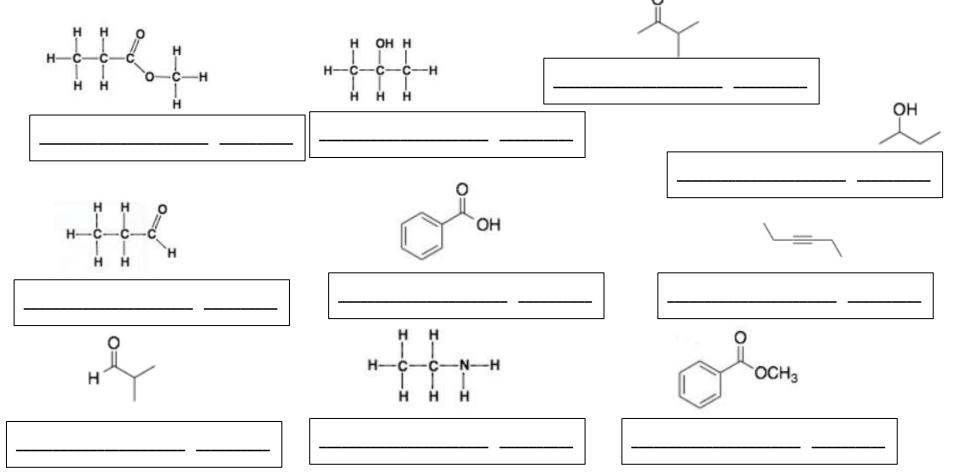
That would not be very effective!

IUPAC Name: Z-2-chloropent-2-en-1-ol

Stereoisomeris m	Substituents	Parent Chain	Unsaturation	Functional Groups

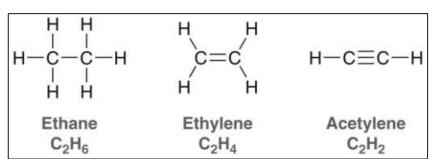

Section 5.1: Functional Groups

ecue	on 5.1:	runctional	Groups			
Stereo	eoisomerism Substituents Parent Chain Unsaturation Functional Gro					
		sp	ecific arrangement	s of atoms that hav	e specific	
chara	cteristics fo	or reactivity				
0	EX: - OH gr "alcohols"	oups that are attache	ed to a molecule all re	act similarly and are c	collectively called	
0	Most textb studied	ooks are arranged ac	cording to functional	groups so their comm	non reactions can be	
0	There are c	lozens of functional g	roups, but we will foc	us on 6 (and probably	see some extras!)	
Each fo	unctional gro	oup has a specific				
They	ccur in a	only (one functional group	can get the "suffix" po	ortion of the name	
0	Additional fu	ınctional groups are nam	ed in the	section of the na	me	
0	Multiple fund	ctional groups: use	,,,	_,, etc before s	suffix -	
	■ EX : 2 a	alcohols = "-diol"				


Functional Groups In Order Functional Group Class of Compound Suffix Hierarc hy Abbreviation: -COOH 3 Abbreviation: -CHO 4 (pronounced"own") 5 6

NO Eupotional Group

Additional "Functional" groups (some on the image are not technically FG's)



5.1 Practice - Identify the functional group and the suffix that would be used

Section 5.2: Unsaturation

- double or triple bonds present in the molecule (or all single bonds)
 - Having multiple bonds means the carbons will be attached to fewer H atoms (therefore the carbons are NOT "saturated")
 - Formula "trick":
 - All single bonds: $C_xH_{(2x+2)}$
 - Double bond means 2 fewer H's: $C_xH_{(2x)}$
 - Triple bond means 4 fewer H's: $C_xH_{(2x-2)}$

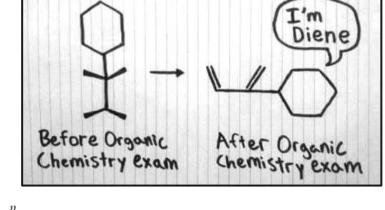
Note: These multiple bonds are separate from ones we might see in functional groups! Those are not C-C multiple bonds and are already accounted for by using the functional group suffix!

Section 5.2: Unsaturation

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

Pentane Pentene Pentyne

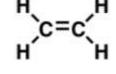
What "Unsaturation" Tells Us:

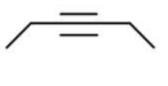

- Double bond = "_____" (pronounced "een")
- Triple bond = "_____" (pronounced "ine")

Things to notice:

- 1. They all have "pent"
- 2. They all end with "e"
- 3. Triple bonds are drawn linear
- 4. None have substituents
- 5. None have stereoisomerism

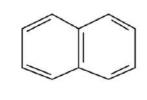
Section 5.2: Multiple double and/or triple bonds

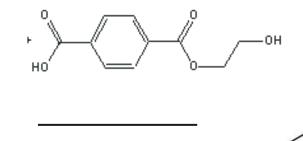

- For multiple double or triple bonds we use these prefixes with the unsaturation term:
 - o di = 2
 - tri = 3 tetra = 4
 - penta = 5
 - hexa = 6
 - (would continue with hepta, octa, nona, deca...)
 - EXAMPLES:
 - two double bonds = "-____-"
 - three double bonds = "-____-"
 - five triple bonds = "-

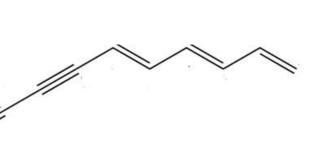


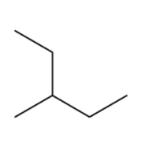
NOTE: ______ bonds always get listed _____! We must be explicit in addressing how many double and triple bonds are present. (everything else is assumed to be single bonds)

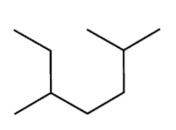
Section 5.2: Practice with Unsaturation

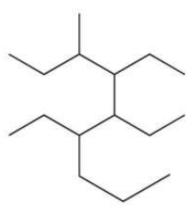




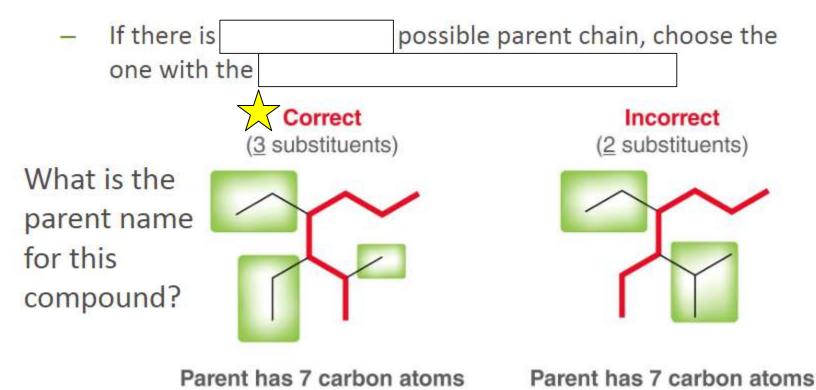


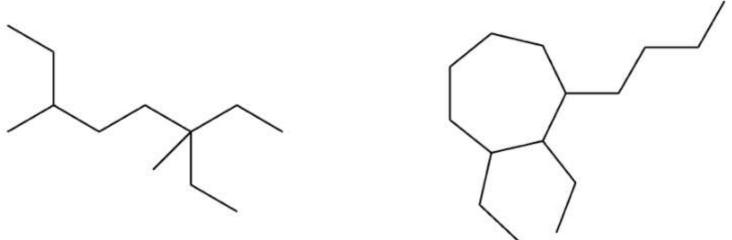

	- 1 1 1					
Section 5.3: Parent	Chain	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
				Г		
 Parent Chain - the root longest 					Longest Chain of C's	Parent Chain Name
to include the following					1	
1					2	
2 3.					3	
Note: if the carbon atoms are	in a ring w	ve add the	term"	"	4	
EX: ring of 6 C's = "	"				5	
	\triangle		(6	
Helpful Saying:	Cyclopropane	-		opentane	7	
"My Evil Puppy Bites People	H orribly	Hard On N	lasty <u>D</u> a	iys!"	8	
					9	


Section 5.3: How to find the Parent Chain (no FG)


Pick a "starting" point and begin counting as many carbons in a row as you can (it can go L to R, down to up, the direction doesn't matter!)

- Just don't "backtrack" over a carbon
- **EX:** choose the parent chain for each


NUMBER OF CARBON ATOMS	PARENT
11	undec
12	dodec
13	tridec
14	tetradec


Section 5.3: What about ties?

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

Section 5.3: How to find the Parent Chain (no FG)

Give the parent name for the following compounds

 The parent name may <u>NOT</u> include carbons that are both in a ring and outside a ring.

Section 5.3: Practice Finding the Parent Chain

Make sure you parent chain includes functional groups, then multiple bonds, if present

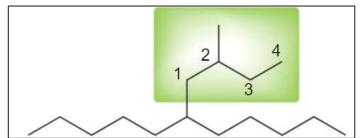
Section 5.4: Naming Substituents

Stereoisomerism	Substituents	Parent Chain	Unsaturation	n Functional Groups	
Substituents: every	Number of C's in Sub.	Substituent name			
NOT covered under	r the main functiona	l group suffix		1	
		: these are brand	ches of carbon	2	
groups (single bond	led)			3	
 Add "" t chain 	o the same terminol	ogy we would use fo	or the parent	4	
EX:				5	
Substituen	its	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Parent	6	
				7	
				8	

Section 5.4

Alternative ways to list/show substituents:

- **Methyl** groups can be shown as:
 - EX:

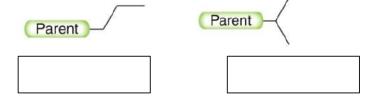

- **Ethyl** groups can be shown as:
 - EX:

- **Propyl** groups are usually drawn out, but could be written as "-Pr"
 - EX:

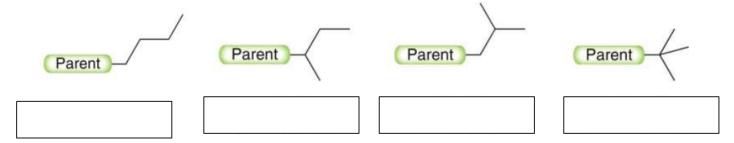
Section 5.4

How to name "Complex Branched" Substituents: This is a little more than what we will get to in our HS organic course, but is most-definitely on the "college" plate! I just want you to have seen this!

We will only use some of the "common names for branched substituents" from the following slide.



- 1. Number the longest carbon chain WITHIN the substituent. Start with the carbon directly attached to the main chain
- 2. Name the "parent chain" of the substituent (in this case butyl)
- 3. Name and Number the substituent's side group (in this case 2-methyl)
- 4. The name of the whole substituent is (2-methylbutyl)


Section 5.4

Common Names for "Branched" Substituents: You WILL need to know these common names!

- 3 Carbon Group Variations
 - EX:

- 4 Carbon Groups Variations
 - EX:

Section 5.4 - How to name functional groups as substituents

*When a molecule has	of functional group, the lower-hierarchy functiona
group will be	e "picked up" in this portion of the name

Functional Group Name	How it is Named as a Substituent	
aldehyde		
ketone		
alcohol		
amine		

Section 5.4 - How to name Halogens as substituents

Halogens = group _____ elements

(Basically - add "____" to the end of the halogen's _____ name)

Halogen	How it is Named as a Substituent		
F			
Cl			
Br			

Section 5.4 Final Points

• For _____ substituents of the <u>same kind</u> we use the same prefixes as we did previously:

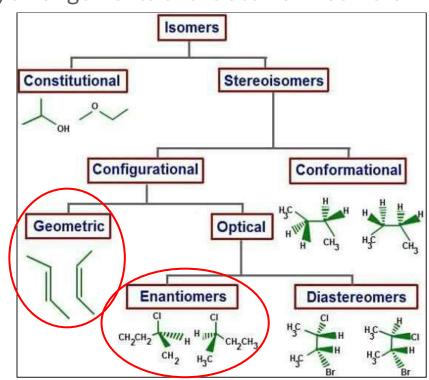
di, tri, tetra, penta, hexa, hepta, etc...

- Each and _____ substituent needs to be ____ so that we know where it goes on the parent chain (more on that once we cover stereoisomerism)
- **Substituents should be listed in _____ order** (from the root of their name, more info later)

Section 5.4 Practice

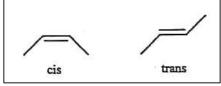
• For each molecule, list out all of the info we have learned so far about it

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
о но				
				_



 Stereoisomerism
 Substituents
 Parent Chain
 Unsaturation
 Functional Groups

<u>Stereoisomerism</u> is the first part of many names but may not always be present! It describes the different _____ (3D) arrangements of the atoms in isomers

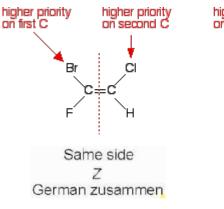

_____: atoms that have the same chemical formula (numbers & types of atoms) but are _____ differently

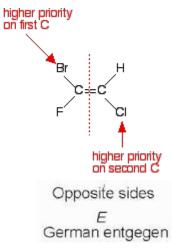
*Many different types, we will be looking at geometric isomers for double bonds and enantiomers

 Stereoisomerism
 Substituents
 Parent Chain
 Unsaturation
 Functional Groups

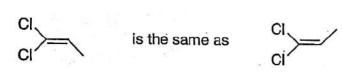
- 1. _____ can have alternate arrangements/configurations
 - a. Due to overlapping p-orbitals "lock" the atoms in place (unlike single bonds which can freely rotate)
 - b. To use _____ or ____, they must have identical groups *on either side* of the double bond that can be compared

Examples:

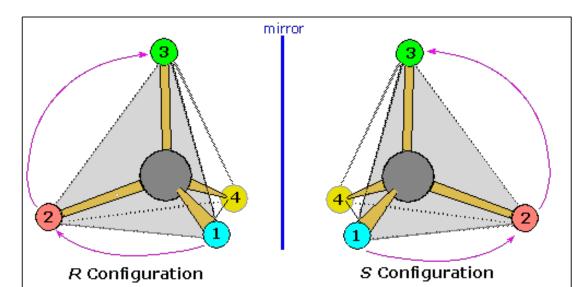



c. The two groups **can** be hydrogen:

EXCEPTIONS to the cis/trans terminology:


- A. Cis/trans has limitations. What if you don't have 2 identical groups opposite of one another?
 - We use E for "_____ side"
 - Or Z for "______ side" of groups.

- This method works for ALL double bonds
- *We learn the priorities of these in a later chapter



- A. If there are 2 identical groups attached to the *same C atom*
 - o EX:

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

- **2. Stereocenters** (carbons attached to 4 diff. "things" we will learn about this later. I'll tell you if it is R or S for now, just get the general idea of it below)
 - Uses R for "_____ handed" rotation (______
 - Uses S for "_____ handed" rotation (______

Section 5.5 Practice

Determine if the double bonds are cis, trans, or neither

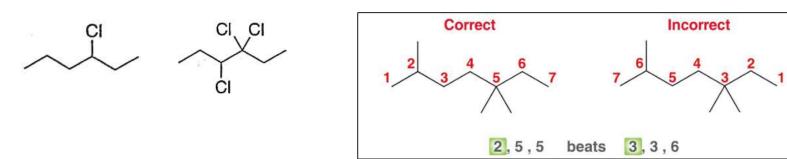
$$H_3C$$
 COOH H_3C $C=C$ H COOH

$$\begin{array}{c} H \\ C = C \\ H \end{array}$$

Section 5.6 Numbering

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups

Numbering applies to ALL parts of the name!


OH

- When numbering the parent chain, we use the _____ hierarchy as we did to pick it:
 - Functional group
 - Double bond

Make sure the "

- Triple bond
- *If <u>NONE</u> of them are present, simply number so that the total of the substituents has the _____value

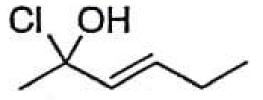
" option give priority in the order above

Section 5.6 How to place numbers in names

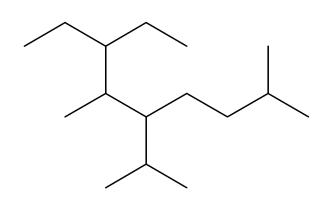
- General Number "Rules"
 - Everything needs numbered!
 - Except a functional group or double bond if it is on the **first carbon only**
 - If you have multiples of a part of the name, then EACH needs numbered
 - EX: "-2,4,6-trimethyl"
 - Use (hyphen)between #'s and letters
 - Use, (comma) between multiple numbers
- Functional Group place the number in front of the suffix
- Unsaturation use only the lower of the carbon's number on the parent chain

- Substituents place directly in front of each substituent
- Stereoisomerism if more than one double bond we have to indicate each with a number. If there is only one double bond we can just put *cis* or *trans* / E or Z out front. Stereocenters, (R or S) are placed in parentheses.

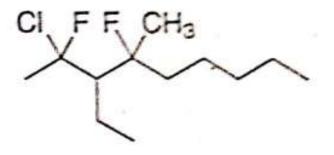
Worked-out Examples to reference

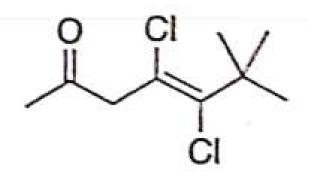

5,5-dichloro-2-vinyl-1,3,6-cyclooctatriene

$$\equiv H_{3}C \xrightarrow{1} \xrightarrow{2} \xrightarrow{3} \xrightarrow{CH_{3}} 4-isopropyl-1-methylcyclohexene}$$

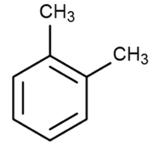

$$\equiv CH_{3} \xrightarrow{C} \xrightarrow{CH_{3}} 1-cyclobutyl-3-methyl-1-butyne}$$

$$\equiv CH_{3} \xrightarrow{CH_{3}} 1-cyclobutyl-3-methyl-1-butyne}$$


Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups	s
--	---


Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------



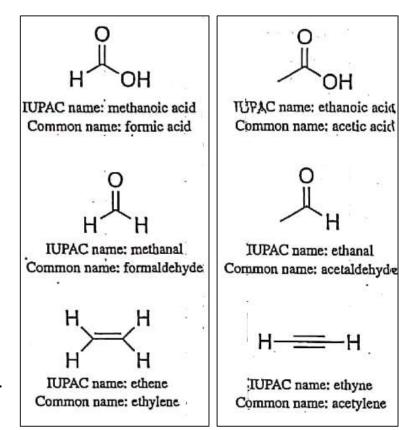
Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

5. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups	
-----------------	--------------	--------------	--------------	-------------------	--

Practice with "rings" of carbons!

Section 5.7 Common Names


 Most of these names are so common, you may never hear anyone use their IUPAC name! It is important to familiarize yourself with them.

SPECIAL NOTE ON ETHERS:

 The common way to name ethers is to place the group on "either" side of the O is named as a substituent before the term "ether"

 The IUPAC method would be to treat the O like a C and use the term -oxa. So diethyl ether would be 3-oxapentane (but no one calls it that!)

5.7 Common names of "di-substituted" Rings!

Sometimes Rings use some special terminology. You are not required to know this for HS O-Chem, but

you will for college! Conjugated double bond cyclohexanes *You may see are also called this on **benzene** rings **Nomenclature**

1,2-dichlorobenzene 1.4-dichlorobenzene 1,3-dichlorobenzene

1-bromo-3-chlorobenzene 2-bromotoluene meta-chlorobromobenzene ortho-bromotoluene artha-dichlorobenzene para-dichlorobenzene meta-dichlorobenzene dichlorobenzene p-dichlorobenzene m-chlorobromobenzene a-bromotoluene m-dichlorobenzene

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

1. 2,4-dimethylcyclopent-1-ene *Note you could also see: 2,4-dimethylcyclopentene

Stereoisomerism Substituents Parent Chain Unsaturation Functional Grou
--

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

2. *trans*- 6-hydroxy-3,4-dimethyloct-3-enal

Stereoisomerisr	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

CONGRATULATIONS! YOU HAVE REACHED THE END OF CHAPTER

ot organic nomenclature Professor videos on his playlist for various parts Dave **Explain has MANY**

