Organic Chemistry - Chapter 5 Nomenclature

The "art" of the IUPAC system in organic chemistry Because doesn't that look like fun?!?

What is IUPAC and why do we "need" it?

- In 1892, as the number of known molecules grew, chemists decided that a SYSTEMATIC naming system was needed
- IUPAC system International Union of Pure and Applied Chemistry
- We can learn the IUPAC system instead of having to memorize a common name for every molecule

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Many organic compounds have common names

Formic acid Isolated from ants and named after the Latin word for ant, *formica*

Urea Isolated from urine

Morphine A painkiller named after the Greek God of dreams, Morpheus

Barbituric acid Adolf von Baeyer named this compound in honor of a woman named Barbara

 Some common names have been used for hundreds of years and are still frequently used.

How does it work?

There are 5 parts to every name:

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

- **Stereoisomerism** provides info about double bonds (cis/trans or E/Z) as well as stereocenters (R/S learned later)
- *Substituents* groups coming off of the main parent chain (like branches)
- **Parent chain** the main chain of carbons
- Unsaturation identifies all single bonds or if there are any double or triple bonds present
- Functional Group the group of atoms for which the molecule is named

*We will begin at the end of the name and work our way back through all 5 parts! But first, let's see an example on the next slide

Example!

Imagine trying to name this compound so that EVERY time that name was used someone knew exactly what it was.

EX: "You know it's got a double bond with a CI and an OH"

That would not be very effective!

IUPAC Name: Z-3-chloropent-2-en-1-ol

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
Z	3-chloro	pent	2-en	1-ol

Section 5.1: Functional Groups

	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
--	-----------------	--------------	--------------	--------------	-------------------

- **Functional group** specific arrangements of atoms that have specific characteristics for reactivity
 - EX: OH groups that are attached to a molecule all react similarly and are collectively called "alcohols"
 - Most textbooks are arranged according to functional groups so their common reactions can be studied
 - There are dozens of functional groups, but we will focus on 6 (and probably see some extras!)
- Each functional group has a specific suffix
- They occur in a hierarchy only one functional group can get the "suffix" portion of the name
 - Additional functional groups are named in the substituent section of the name
 - Multiple functional groups: use di, tri, tetra, penta, hexa, etc... before suffix **EX**: 2 alcohols = "-diol"

Functional Groups In Order

Hierarchy	Functional Group	Class of Compound	Suffix	
1	Abbreviation: -COOH	Carboxylic acid	-oic acid	
2	R	Ester	-oate	
3	Abbreviation: -CHO	Aldehyde	-al	
4	R ^I R'	Ketone	-one (pronounced"own")	
5	R-OH	Alcohol	-ol	
6	R-NH ₂ R-N R-N Primary Secondary Tertiary Amine Amine Amine	Amine	-amine	onal Groups
	NO Functional Gro	up	-е	CH R-COOH

Additional "Functional" groups (some on the image are not technically FG's)

5.1 Practice - Identify the functional group and the suffix that would be used

Section 5.2: Unsaturation

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
		16.1		

- <u>Unsaturation</u> this region describes if there are any carbon-carbon double or triple bonds present in the molecule (or all single bonds)
 - Having multiple bonds means the carbons will be attached to fewer H atoms (therefore the carbons are NOT "saturated")
 - Formula "trick":
 - All single bonds: C_xH_(2x+2)
 - Double bond means 2 fewer H's: C_xH_(2x)
 - Triple bond means 4 *fewer* H's: C_xH_(2x-2)

Note: These multiple bonds are separate from ones we might see in functional groups! Those are not C-C multiple bonds and are already accounted for by using the functional group suffix!

Section 5.2: Unsaturation

What "Unsaturation" Tells Us:

- All single bonds = "an"
- **Double bond** = "en" (pronounced "een")
- <u>Triple bond</u> = "yn" (pronounced "ine")

Things to notice:

- 1. They all have "pent"
- 2. They all end with "e"
- 3. Triple bonds are drawn linear
- 4. None have substituents
- 5. None have stereoisomerism

Section 5.2: Multiple double and/or triple bonds

- For multiple double or triple bonds we use these prefixes with the unsaturation term:
 - di = 2
 - tri = 3
 - \circ tetra = 4
 - o penta = 5
 - hexa = 6
 - (would continue with hepta, octa, nona, deca...)
 - EXAMPLES:
 - two double bonds = "-dien-"
 - three double bonds = "-trien-"
 - five triple bonds = "-pentayn-"

• **<u>NOTE</u>:** double bonds always get listed first! We must be explicit in addressing how many double and triple bonds are present. (everything else is assumed to be single bonds)

Section 5.2: Practice with Unsaturation

Section 5.3: Parent Chain

Stereoisomerism Substituents

- Parent Chain the root of the name that is based off of the longest *consecutive chain* of carbons, making sure to **include** the following groups, if present, **in this order**:
 - 1. Functional group
 - 2. Double bond
 - 3. Triple bond

Note: if the carbon atoms are in a ring, we add the term "cyclo" EX: ring of 6 C's = "cyclohex" \triangle \square \bigcirc Cyclopropane Cyclobutane Cyclopentane

"My Evil Puppy Bites People Horribly Hard On Nasty Days!"

Longest Chain of C's	Parent Chain Name
1	meth
2	eth
3	prop
4	but
5	pent
6	hex
7	hept
8	oct
9	non
10	dec

Section 5.3: How to find the Parent Chain (no FG)

Pick a "starting" point and begin counting as many carbons in a row as you can (it can go L to R, down to up, the direction doesn't matter!)

- Just don't "backtrack" over a carbon
- **EX:** choose the parent chain for each

NUMBER OF	PARENT
CARBON ATOMS	
11	undec
12	dodec
13	tridec
14	tetradec

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.3: What about ties?

Parent has 7 carbon atoms

Parent has 7 carbon atoms

Section 5.3: How to find the Parent Chain (no FG)

 The parent name may <u>NOT</u> include carbons that are both in a ring and outside a ring.

Section 5.3: Practice Finding the Parent Chain

Make sure you parent chain includes functional groups, then multiple bonds, if present

Section 5.4: Naming Substituents

Stereoisomerism	Substituents	Parent Chain	Unsaturation		Function	al Groups
Substituents: every	thing that is connec	ted to the parent ch	ain that is	Nı C'	umber of s in Sub.	Substituent name
NOT covered unde	r the main functiona	l group suffix			1	methyl
					2	ethyl
Alkyl Substituents:	these are branches	of carbon groups (si	ingle bonded)		3	propyl
- Add "yl" to the	e same terminology	we would use for the	e parent chain		4	butyl
EX:					5	pentyl
					6	hexyl
Substituer	nts		Parent		7	heptyl
			8	octyl		
					9	nonyl
					10	decyl

Section 5.4

Alternative ways to list/show substituents:

- Methyl groups can be shown as:
 - EX:
- **Ethyl** groups can be shown as:
 - EX:

- **Propyl** groups are usually drawn out, but could be written as "-Pr"
 - EX:

Section 5.4

How to name "Complex Branched" Substituents: This is a little more than what we will get to in our HS organic course, but is most-definitely on the "college" plate! I just want you to have <u>seen</u> this!

We will only use some of the "common names for branched substituents" from the following slide.

- 1. Number the longest carbon chain WITHIN the substituent. Start with the carbon directly attached to the main chain
- 2. Name the "parent chain" of the substituent (in this case butyl)
- 3. Name and Number the substituent's side group (in this case 2-methyl)
- 4. The name of the whole substituent is (2-methylbutyl)

Section 5.4

Common Names for "Branched" Substituents: You WILL need to know these common names!

- 3 Carbon Group Variations
 - EX:

- 4 Carbon Groups Variations
 - EX:

Section 5.4 - How to name functional groups as substituents

*When a molecule has <u>more than one type</u> of functional group, the lower-hierarchy functional group will be "picked up" in this portion of the name

Functional Group Name	How it is Named as a Substituent
aldehyde	-aldo-
ketone	-keto-
alcohol	-hydroxy-
amine	-amino-

Section 5.4 - How to name Halogens as substituents

Halogens = group 17 elements

(Basically - add "o" to the end of the halogen's root name)

Halogen	How it is Named as a Substituent
F	-fluoro-
CI	-chloro-
Br	-bromo-
	-iodo-

Section 5.4 Final Points

• For multiple substituents of the <u>same kind</u> we use the same prefixes as we did previously:

di, tri, tetra, penta, hexa, hepta, etc...

- Each and every substituent needs to be numbered so that we know where it goes on the parent chain (more on that once we cover stereoisomerism)
- Substituents should be listed in ABC order (from the root of their name, more info later)

Section 5.4 Practice

Br

• For each molecule, list out all of the info we have learned so far about it

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
О НО				

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

<u>Stereoisomerism</u> is the first part of many names but may not always be present! It describes the different spatial (3D) arrangements of the atoms in isomers

> **Isomers:** atoms that have the same chemical formula (numbers & types of atoms) but are arranged differently

*Many different types, we will be looking at geometric isomers for double bonds and enantiomers

	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
--	-----------------	--------------	--------------	--------------	-------------------

- 1. Double bonds can have alternate arrangements/configurations
 - a. Due to overlapping p-orbitals "lock" the atoms in place (unlike single bonds which can freely rotate)
 - b. To use **cis** or **trans**, they must have identical groups **on either side** of the double bond that

c. The two groups **can** be hydrogen:

EXCEPTIONS to the cis/trans terminology:

- A. Cis/trans has limitations. What if you don't have 2 identical groups opposite of one another?
 - We use E for "Epposite side"
 - Or Z for "Zame side" of groups.

- \circ $\,$ $\,$ This method works for ALL double bonds $\,$
- *We learn the priorities of these in a later chapter

A. If there are 2 identical groups attached to the *same C atom*

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

2. Stereocenters (carbons attached to 4 diff. "things" - we will learn about this later. I'll tell you if it is R or S for now, just get the general idea of it below)

- Uses **R** for "right handed" rotation (clockwise)
- Uses **S** for "left handed" rotation (counter-clockwise)

Section 5.5 Practice

Determine if the double bonds are cis, trans, or neither

Section 5.6 Numbering

Stereoisomerism Substituents Parent Chain Unsatura	ation Functional Groups
--	-------------------------

- Numbering applies to ALL parts of the name!
- When numbering the parent chain, we use the same hierarchy as we did to pick it:
 - Functional group
 - Double bond
 - Triple bond
- Make sure the "lower number" option give priority in the order above

• *If NONE of them are present, simply number so that the total of the substituents has the lowest value

OH

Section 5.6 How to place numbers in names

- General Number "Rules"
 - Everything needs numbered!
 - Except a functional group or double bond if it is on the **first carbon only**
 - If you have multiples of a part of the name, then EACH needs numbered
 - EX: "-2,4,6-trimethyl"
 - Use (hyphen)between #'s and letters
 - Use , (comma) between multiple numbers
- Functional Group place the number in front of the suffix
- Unsaturation use only the lower of the carbon's number on the parent chain

• EX:
$$2^{2} 4^{6}_{135}$$

- Substituents place directly in front of each substituent
- *Stereoisomerism* if more than one double bond we have to indicate each with a number. If there is only one double bond we can just put *cis* or *trans* / E or Z out front. Stereocenters, (R or S) are placed in parentheses.

Worked-out Examples to reference

Section 5.6 Practice - Putting it all together

1. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Section 5.6 Practice - Putting it all together

2. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Section 5.6 Practice - Putting it all together

3. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Section 5.6 Practice - Putting it all together

4. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Section 5.6 Practice - Putting it all together

5. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Practice with "rings" of carbons!

Section 5.7 Common Names

• Most of these names are so common, you may never hear anyone use their IUPAC name! It is important to familiarize yourself with them.

SPECIAL NOTE ON ETHERS:

• The common way to name ethers is to place the group on "either" side of the O is named as a substituent before the term "ether"

Diethyl ether (also just ethyl ether)

~0~

Dimethyl ether

• The IUPAC method would be to treat the O like a C and use the term -oxa. So diethyl ether would be 3-oxapentane (*but no one calls it that!*)

5.7 Common names of "di-substituted" Rings!

Sometimes Rings use some special terminology. You are not required to know this for HS O-Chem, but

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

1. 2,4-dimethylcyclopent-1-ene *Note you could also see: 2,4-dimethylcyclopentene

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

2. trans- 6-hydroxy-3,4-dimethyloct-3-enal

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Helpful Video Resources!

Professor Dave Explain has MANY videos on his playlist for various parts of organic nomenclature. <u>CLICK HERE</u> to check out the list!

CONGRATULATIONS! YOU HAVE REACHED THE END OF CHAPTER 5!!!!!

Student Version of Slides to Follow

Organic Chemistry Name:_____ Chapter 5 - Nomenclature Notes

What is IUPAC and why do we "need" it?

- In as the number of known molecules grew, chemists decided that a naming system was needed
- IUPAC system –
- We can learn the IUPAC system instead of having to memorize a common name for every molecule

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY Many organic compounds have common names

 Some common names have been used for hundreds of years and are still frequently used.

How does it work?

There are 5 parts to every name:

- Stereoisomerism provides info about ______ (cis/trans or E/Z) as well as _____(R/S learned later)
- Substituents g______(like branches)
- Parent chain the ______
- Unsaturation identifies all ______ bonds or if there are any ______ or _____
 bonds present
- Functional Group the ______ of ______ for which the molecule is named

*We will begin at the ______ of the name and work our way back through all 5 parts! But first, let's see an example on the next slide

Example!

Imagine trying to name this compound so that EVERY time that name was used someone knew exactly what it was.

EX: "You know it's got a double bond with a Cl and an OH"

That would not be very effective!

IUPAC Name: Z-2-chloropent-2-en-1-ol

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Section 5.1: Functional Groups

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

_____ - specific arrangements of atoms that have specific

characteristics for reactivity

- EX: OH groups that are attached to a molecule all react similarly and are collectively called "alcohols"
- Most textbooks are arranged according to functional groups so their common reactions can be studied
- There are dozens of functional groups, but we will focus on 6 (and probably see some extras!)
- Each functional group has a specific _____
- They occur in a ______ only one functional group can get the "suffix" portion of the name
 - Additional functional groups are named in the ______ section of the name
 - Multiple functional groups: use _____, ____, ____, ____, etc... before suffix -
 - EX: 2 alcohols = "-diol"

Functional Groups In Order

Hierarchy	Functional Group	Class of Compound	Suffix
1	Abbreviation: -COOH		
2			
3	Abbreviation: -CHO		
4			(pronounced"own")
5			
6			
	NO Functional	Group	

Additional "Functional" groups (some on the image are not technically FG's)

5.1 Practice - Identify the functional group and the suffix that would be used

Section 5.2: Unsaturation

S	Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
•		thi	is region describes	if there are any	

double or triple bonds present in the molecule (or all single bonds)

- Having multiple bonds means the carbons will be attached to fewer H atoms (therefore the carbons are NOT "saturated")
- Formula "trick":
 - All single bonds: C_xH_(2x+2)
 - Double bond means 2 *fewer* H's: C_xH_(2x)
 - Triple bond means 4 *fewer* H's: C_xH_(2x-2)

Note: These multiple bonds are separate from ones we might see in functional groups! Those are not C-C multiple bonds and are already accounted for by using the functional group suffix!

Section 5.2: Unsaturation

Things to notice:1. They all have "pent"2. They all end with "e"3. Triple bonds are drawn linear4. None have substituents5. None have stereoisomerism

Section 5.2: Multiple double and/or triple bonds

- For multiple double or triple bonds we use these prefixes with the unsaturation term:
 - di = 2
 - tri = 3
 - \circ tetra = 4
 - o penta = 5
 - \circ hexa = 6
 - (would continue with hepta, octa, nona, deca...)
 - EXAMPLES:
 - two double bonds = "-____-"
 - three double bonds = "-_____
 - five triple bonds = "-_____

NOTE: ______ bonds always get listed ______! We must be explicit in addressing how many double and triple bonds are present. (everything else is assumed to be single bonds)

Section 5.2: Practice with Unsaturation

Section 5.3: Parent Chain

Cyclobutane

Cyclopentane

• Parent Chain - the root of the name that is based off of the longest ______ chain of carbons, making sure

to **include** the following groups, if present, **in this order**:

Note: if the carbon atoms are in a ring, we add the term "_____ EX: ring of 6 C's = "_____"

Helpful Saying:

"<u>My Evil Puppy Bites People H</u>orribly <u>H</u>ard <u>On N</u>asty <u>D</u>ays!"

Cyclopropane

Longest Chain of C's	Parent Chain Name
1	
2	
3	
4	
5	
6	
7	
8	
Q	

Section 5.3: How to find the Parent Chain (no FG)

Pick a "starting" point and begin counting as many carbons in a row as you can (it can go L to R, down to up, the direction doesn't matter!)

- Just don't "backtrack" over a carbon
- **EX:** choose the parent chain for each

NUMBER OF	PARENT
CARBON ATOMS	
11	undec
12	dodec
13	tridec
14	tetradec

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.3: What about ties?

Parent has 7 carbon atoms

Parent has 7 carbon atoms

Stereoisomerism Substituents Parent Chain Unsaturation Functional Groups
--

Section 5.3: How to find the Parent Chain (no FG)

 The parent name may <u>NOT</u> include carbons that are both in a ring and outside a ring.

Section 5.3: Practice Finding the Parent Chain

Make sure you parent chain includes functional groups, then multiple bonds, if present

Section 5.4: Naming Substituents

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Function		al Groups
Substituents: everything that is connected to the parent chain that is					per of Sub.	Substituent name
NOT covered under the main functional group suffix						
		: these are brand	hes of carbon	2	2	
groups (single bond	ed)			3	3	
 Add "" t chain 	o the same terminol	ogy we would use fo	or the parent	4	•	
EX:				5	5	
Substituents Parent				6	;	
					,	
				8	3	

Section 5.4

Alternative ways to list/show substituents:

- Methyl groups can be shown as:
 - EX:
- **Ethyl** groups can be shown as:
 - EX:

- **Propyl** groups are usually drawn out, but could be written as "-Pr"
 - EX:

Section 5.4

How to name "Complex Branched" Substituents: This is a little more than what we will get to in our HS organic course, but is most-definitely on the "college" plate! I just want you to have <u>seen</u> this!

We will only use some of the "common names for branched substituents" from the following slide.

- 1. Number the longest carbon chain WITHIN the substituent. Start with the carbon directly attached to the main chain
- 2. Name the "parent chain" of the substituent (in this case butyl)
- 3. Name and Number the substituent's side group (in this case 2-methyl)
- 4. The name of the whole substituent is (2-methylbutyl)

Section 5.4

Common Names for "Branched" Substituents: You WILL need to know these common names!

- <u>3 Carbon Group Variations</u>
 - EX:

- <u>4 Carbon Groups Variations</u>
 - EX:

Section 5.4 - How to name functional groups as substituents

*When a molecule has ______ of functional group, the lower-hierarchy functional group will be "picked up" in this portion of the name

Functional Group Name	How it is Named as a Substituent		
aldehyde			
ketone			
alcohol			
amine			

Section 5.4 - How to name Halogens as substituents

Halogens = group _____ elements

• (Basically - add "_____" to the end of the halogen's ______ name)

Halogen	How it is Named as a Substituent
F	
Cl	
Br	
Ι	

Section 5.4 Final Points

• For ______ substituents of the <u>same kind</u> we use the same prefixes as we did previously:

di, tri, tetra, penta, hexa, hepta, etc...

- Each and ______ substituent needs to be ______ so that we know where it goes on the parent chain (more on that once we cover stereoisomerism)
- Substituents should be listed in _____ order (from the root of their name, more info later)

Section 5.4 Practice

Br

• For each molecule, list out all of the info we have learned so far about it

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
О НО				
Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------
-----------------	--------------	--------------	--------------	-------------------

<u>Stereoisomerism</u> is the first part of many names but may not always be present! It describes the different _____ (3D) arrangements of the atoms in isomers

<u>:</u> atoms that have the same chemical formula (numbers & types of atoms) but are ______ differently

*Many different types, we will be looking at geometric isomers for double bonds and enantiomers

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
1	can have alternate arrangements/configurations			

- a. Due to overlapping p-orbitals "lock" the atoms in place (unlike single bonds which can freely rotate)
- b. To use ______ or _____, they must have identical groups *on either side* of the double bond that can be compared

c. The two groups <u>can</u> be hydrogen:

EXCEPTIONS to the cis/trans terminology:

A. Cis/trans has limitations. What if you don't have 2 identical groups opposite of one another?

• EX: CI is the same as CI CI

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

2. Stereocenters (carbons attached to 4 diff. "things" - we will learn about this later. I'll tell you if it is R or S for now, just get the general idea of it below)

- Uses R for "_____ handed" rotation (______
- Uses **S** for "_____ handed" rotation (______

Section 5.5 Practice

Determine if the double bonds are cis, trans, or neither

Section 5.6 Numbering

Stor	ooisomorism	Substituents	Parant Chain	Upsaturation	Eunctional Groups
Sten	eoisomensm	Substituents	Parent Chain	Unsaturation	Functional Groups
• N	umhering an	nlies to ALL narts of	fthenamel		
				1.	1. 1
• •	when number	ing the parent chain	, we use the	hierarchy as v	we did to pick it:
	• Functiona	al group			
	• Double b	ond			
	• Triple bo	nd			
• 1	lake sure the	«	" option give	priority in the order	above
		ÓН	× · · ·		$\sim \sim$
	\checkmark	\checkmark	$\sim\sim\sim$	1	/ ~ `
• *	f <u>NONE</u> of the	m are present, simply	number so that the to	otal of the substituen	ts has theva

Section 5.6 How to place numbers in names

- General Number "Rules"
 - Everything needs numbered!
 - Except a functional group or double bond if it is on the **first carbon only**
 - If you have multiples of a part of the name, then EACH needs numbered
 - EX: "-2,4,6-trimethyl"
 - \circ ~ Use (hyphen)between #'s and letters
 - Use , (comma) between multiple numbers
- Functional Group place the number in front of the suffix
- Unsaturation use only the lower of the carbon's number on the parent chain

• EX:
$$2 \ 4 \ 6 \ 1 \ 3 \ 5$$

- Substituents place directly in front of each substituent
- *Stereoisomerism* if more than one double bond we have to indicate each with a number. If there is only one double bond we can just put *cis* or *trans* / E or Z out front. Stereocenters, (R or S) are placed in parentheses.

Worked-out Examples to reference

4-isopropyl-1-methylcyclohexene

1-cyclodecen-4-yne

≡

5,5-dichloro-2-vinyl-1,3,6-cyclooctatriene

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

5. Name the molecule!

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups

Practice with "rings" of carbons!

Section 5.7 Common Names

• Most of these names are so common, you may never hear anyone use their IUPAC name! It is important to familiarize yourself with them.

SPECIAL NOTE ON ETHERS:

• The common way to name ethers is to place the group on "either" side of the O is named as a substituent before the term "ether"

Diethyl ether (also just ethyl ether)

~0~

Dimethyl ether

• The IUPAC method would be to treat the O like a C and use the term -oxa. So diethyl ether would be 3-oxapentane (*but no one calls it that!*)

5.7 Common names of "di-substituted" Rings!

Sometimes Rings use some special terminology. You are not required to know this for HS O-Chem, but

o-dichlorobenzene

m-dichlorobenzene

p-dichlorobenzene

m-chlorobromobenzene

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

1. 2,4-dimethylcyclopent-1-ene *Note you could also see: 2,4-dimethylcyclopentene

Stereoisomerism	Substituents	Parent Chain	Unsaturation	Functional Groups
-----------------	--------------	--------------	--------------	-------------------

Section 5.8 Going from a Name to a Structure

Draw out the molecule! (MUCH EASIER!)

2. trans- 6-hydroxy-3,4-dimethyloct-3-enal

Stereoisomerism Substituents Pare	t Chain Unsaturation Functional Groups
-----------------------------------	--

CONGRATULATIONS! YOU HAVE REACHED THE END OF CHAPTER

Think I Do

What My Friends

Think | Do

What My Teacher Thinks I Do

What My Parents

Think | Do