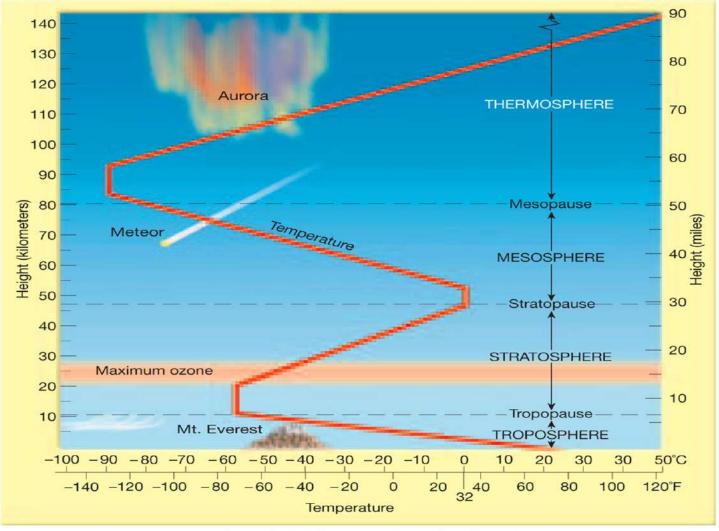
ATMOSPHERE



ESSENTIAL QUESTION:

• How are we tied to our atmosphere?

- How has the formation of an atmosphere affected life?
- How has life affected the atmosphere?
- How has the atmosphere changed?
- How has internal Earth processes affected our atmosphere, and life?
- How can small changes cause large feedback loops?
- In what ways are we altering our atmosphere?

LAYERS

Copyright © 2006 Pearson Prentice Hall, Inc.

LAYERS OF ATMOSPHERE

Layers identified by changes in *temperature*

Troposphere-80% of total atmosphere

- ■~10 mi
- Weather occurs here
- Temp decreases3.5°F per 1000 feet (average)
- Boundary: <u>tropopause</u>

Stratosphere

- About 10 30 miles
- Temperature increases at top
- This is where **<u>ozone</u>** is found
- Outer boundary is named the stratopause

LAYERS, CONTINUED

Mesosphere

30-50 mi

Temp decreases (little ozone)

Mesopause is boundary

Thermosphere

50-90+ mi

Temp increases due to intense solar radiation

Ionosphere

90-500 mi

Air is ionized

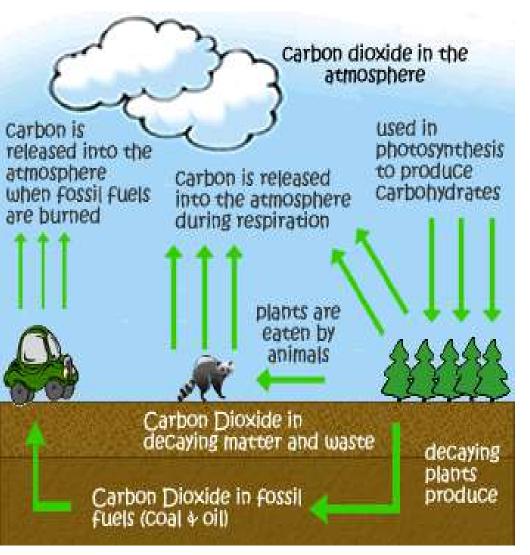
ATMOSPHERIC GASES

Greenhouse gases

- CO2-traps heat and stores it near Earth's surface, preventing escape into space
- Increasing CO2 makes the Earth warmer!
- Without ANY greenhouse effect-Earth would be <u>FREEZING</u>!
- Ozone-O3
- Blocks UV radiation

Principal gases in dry air	percentage
Nitrogen	78%
Oxygen	21%
Argon	.9%
Carbon Dioxide	.036%

ATMOSPHERIC GASES

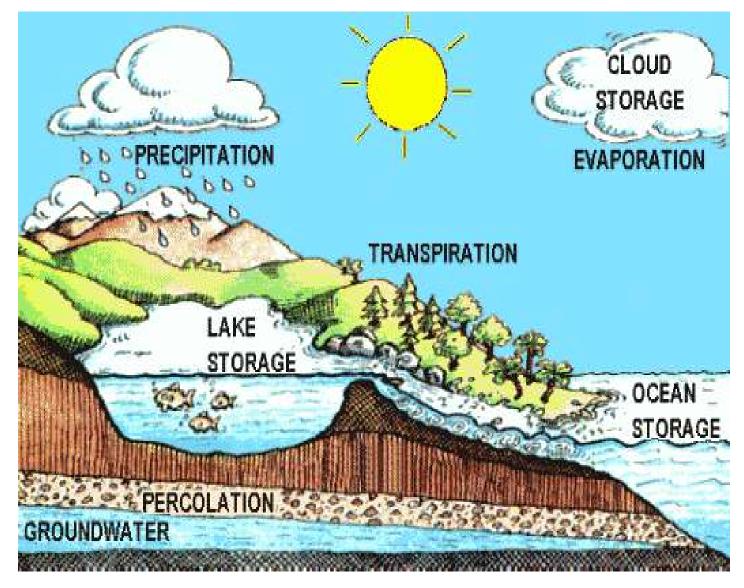

Gases remain constant due to recycling processes within Earth's "systems"

Balance is maintained due to equal parts leaving as entering USUALLY

Local events can disrupt balance

- Burning of fossil fuels and other organic materials increases atmospheric Carbon Dioxide CO2 (Traps heat)
- Volcanic eruptions increases atmospheric SO2 and other gases (Overall effect is reduced heat)

CARBON CYCLE-CO2 AND METHANE (CH_4)



Carbon is crucial to every living thing! Chemical, not physical change Bio-compounds Minerals Plants remove CO₂ from atmosphere, release O₂ Animals (and us) inhale oxygen and exhale CO_2 .

CARBON CYCLES: ROLE OF HUMANS

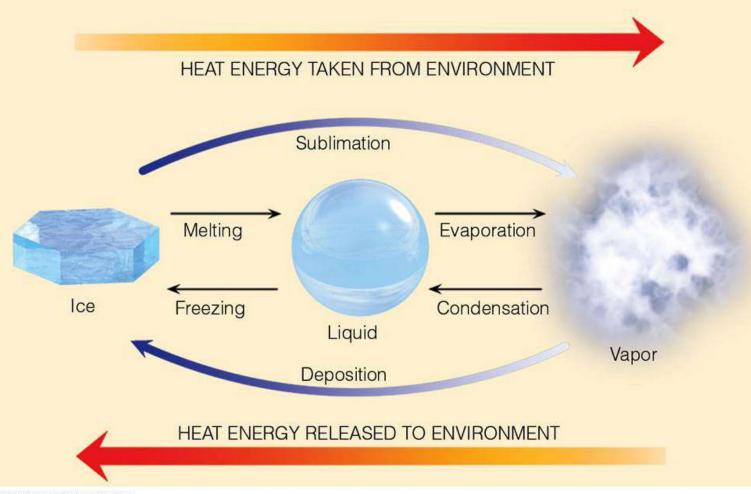
- Currently-we have exceeded natural fluctuations
 Burning fossil fuels (geosphere→atmosphere)
 Higher than last 500,000, rising faster than ever
 Altered weather
- Oceanic chemistry-increased acidity, decreased productivity
 - +temp and +CO2=decomposition-CO2 returned to air quicker than natural
- Deforestation removes a crucial carbon sink
- Warmer temps=thermal expansion of ocean water
 - Water takes up more space as it warms and expands

WATER CYCLE

WATER CYCLE

Movement of water from different reservoirs and to different phases

Physical processes:


Evaporation, condensation, precipitation, Deposition (infiltration, runoff) and sublimation

86% of evap. Comes from oceans, keeping temps cooler

Phases:

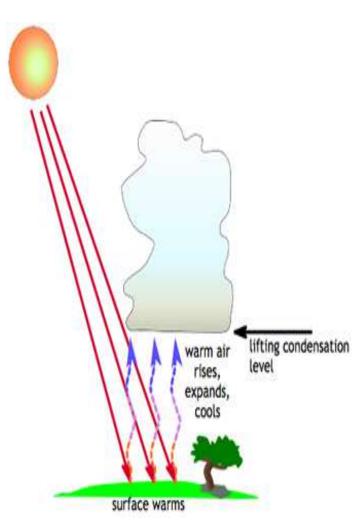
• Liquid, solid (ice), gas (vapor)

PHASE CHANGES

2007 Thomson Higher Education

PHASE CHANGE DEFINITIONS:

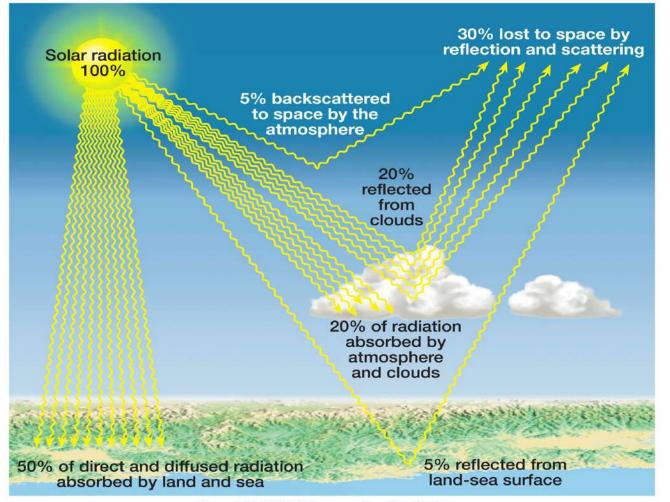
- Opposites—one requires/absorbs energy, the other releases
- Sublimation-solid to gas (requires energy)
- Opposition: opposite (what to what?)
- Evaporation: liquid to gas (requires energy)
- Condensation: opposite
- Melting: solid to liquid (requires energy)
- Freezing: opposite


WAIT A SEC, WASN'T THIS UNIT ON ATMOSPHERE????

Yup.

It is all related-I promise! Promotes phase changes Clouds- (water vapor) affect incoming and outgoing radiation Prime regulator of Earth's Energy

ATMOSPHERIC HEATING AND ENERGY



 All energy comes from the sun
 About 50% absorbed by land and sea-the rest radiated back to space

Sun heats ground, ground heats the air

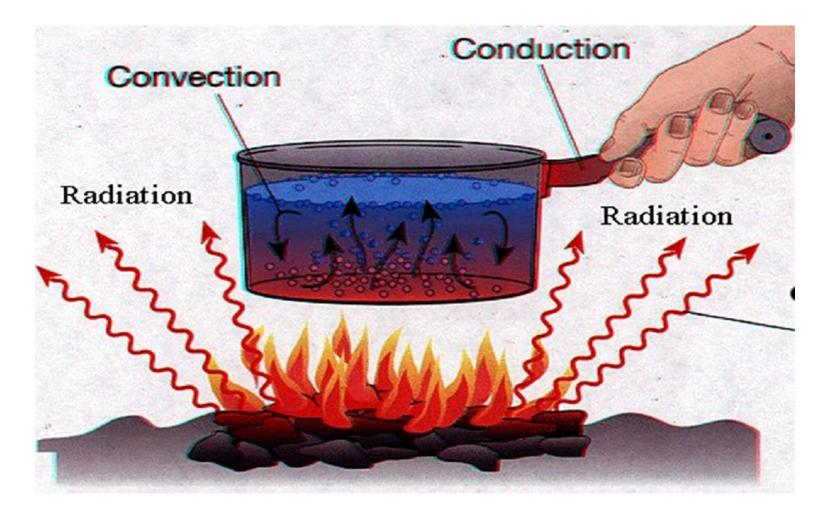
 Warm air rises, expands and cools
 Clouds!!

SURFACE HEATING AND RADIATION

CLOUD FORMATION

- Cold air can hold less water vapor, so it condenses out to form water droplets
- Rising higher and higher→more expansion→more condensation
- Surface COOLING produces fog

HEAT AND THE ATMOSPHERE


Heat: measure of how fast the atoms or molecules of a substance are moving.

- Temperature: is the average kinetic energy (Energy of movement)
- The faster the movement the higher the heat energy and the higher the temperature

HEATTRANSFER

- Radiation the movement of energy through empty space
 - Light travels from a sun across the solar system to the earth
 - Heat from a fire warms your hand without touching the fire.
- Conduction the movement of energy through a substance, on contact. Atoms or molecules collide with others to make them move
 - Heat moves through the handle of a hot pot to burn your hand
- Convection the rising and falling of a substance due to its change its temperature/density
 - Water in a pot boils, heat in a room rises, cold water sinks

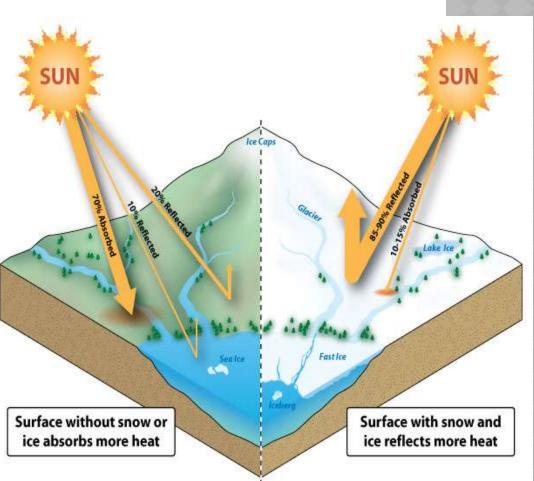
HEAT TRANSFER MECHANISMS

ALBEDO

Measure of a surfaces' reflectivity

Very dark colors have an albedo close to zero (or close to 0%).

Very light colors have an albedo close to 100%


GROUND SURFACE HEATING

Albedo vs absorption Albedo

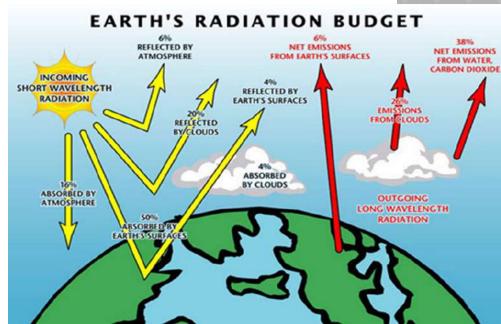
 Solar energy reflected from Earth back into space

Albedo-cool temps

Absorption-warm temps

the-m-factory.com + 410.420.8032

ALBEDO VS ABSORPTION CONTINUED


Two surfaces-Land and Water

- Dark materials (most land surfaces) absorb more heat
- Trees-low albedo, high absorption

Snow-high albedo, low absorption

temperature feedback

Clouds

BLACK CARBON

When fossil fuels are not burned completely,

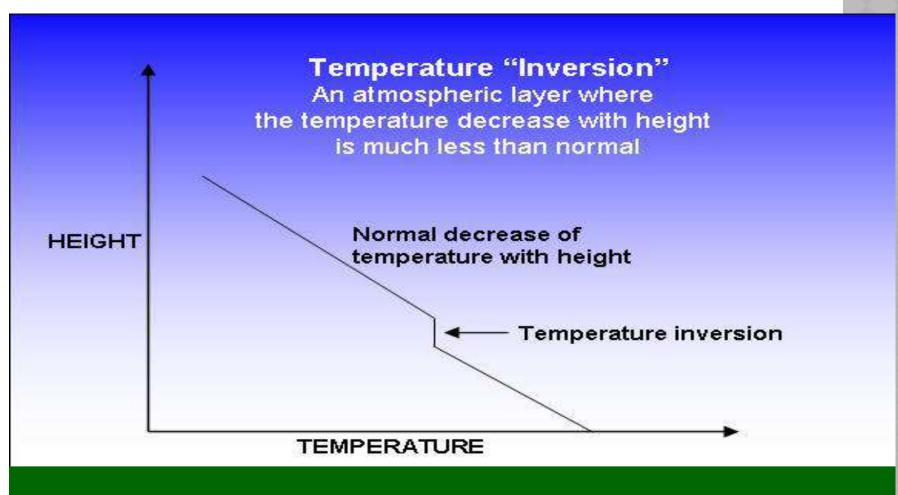
- They produce black carbon or SOOT
- LARGE climate impact:
- Remains in atmosphere for days-weeks, absorbing sunlight and generating heat
 - When it settles, it darkens snow and ice, decreasing albedo, warming the area, melting the ice (feedback)

HUMAN IMPACTS ON THE ATMOSPHERE

Air pollution-any airborne gas or particle that occurs at a concentration capable of harming humans or the environment

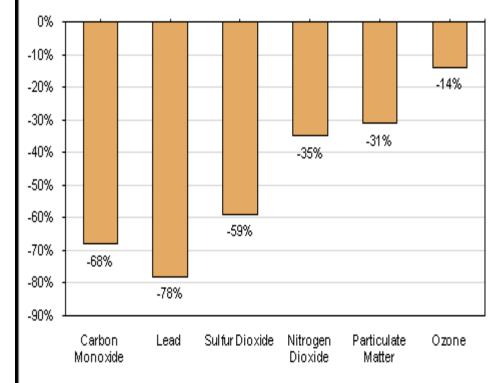
Dust, pollen and mold can be suspendedSMOG

- Brownish haze formed mainly from auto exhaust
- When sunlight interacts with smog, can cause
 <u>ozone</u> to form
 - Although atmospheric ozone is helpful to us, groundbased ozone can cause respiratory problems
 - From the term Smoky Fog


TEMPERATURE INVERSIONS

- When the air at Earth's surface is colder than the air above
- Convection does not occur
- Warm air above acts as a lid, trapping pollutants
- Smog rises to dangerous levels

TEMPERATURE INVERSION



MAJOR POLLUTANTS

	MAJOR Sources	HEALTH EFFECTS	ENVIRONMENTAL EFFECTS
SO ₂	Industry	Respiratory and cardiovascular illness	Precursor to acid rain, which damages lakes, rivers, and trees; damage to cultural relics
NO _x	Vehicles; industry	Respiratory and cardiovascular illness	Nitrogen deposition leading to over- fertilization and eutrophication
PM	Vehicles; industry	Particles penetrate deep into lungs and can enter bloodstream	Visibility
CO	Vehicles	Headaches and fatigue, especially in people with weak cardiovascular health	
Lead	Vehicles (burning leaded gasoline)	Accumulates in bloodstream over time; damages nervous system	Fish/animal kills
Ozone	Formed from reaction of NO, and VOCs	Respiratory illness	Reduced crop production and forest growth; smog precursor
VOCs	Vehicles; industrial processes	Eye and skin irritation; nausea; headaches; carcinogenic	Smog precursor

Common pollutants

Percentage change in concentrations of six common air pollutants, 1990-2008

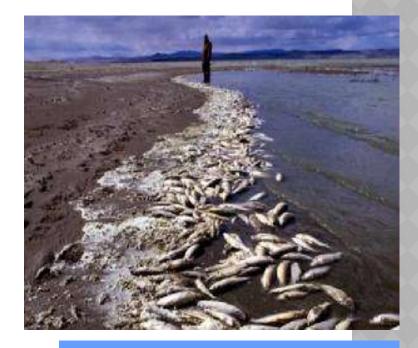
Source: "Air Trends", June 2009, En vironmental Protection Agency

See also: Australian National Pollutant Inventory - Substance Fact Sheets

ACID RAIN

Pollutants (sulfur dioxide and nitrogen oxides) react with water vapor in the air

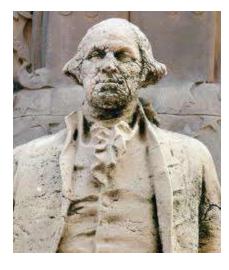
- acid rain lowers pH
- Most life has limited range of pH


• Lakes and streams-large fish death

Regional Forests-strips away vital nutrients from soil, limiting tree growth and increases vulnerability to disease

■→tree death→less CO2 removal

Damages structures-limestone and marble buildings and gravestones, Parthenon in Greece



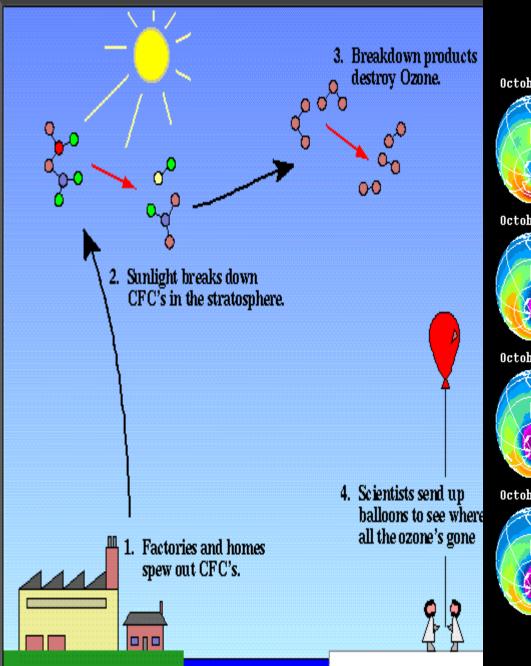
Acid Rain Effects on Sculptures

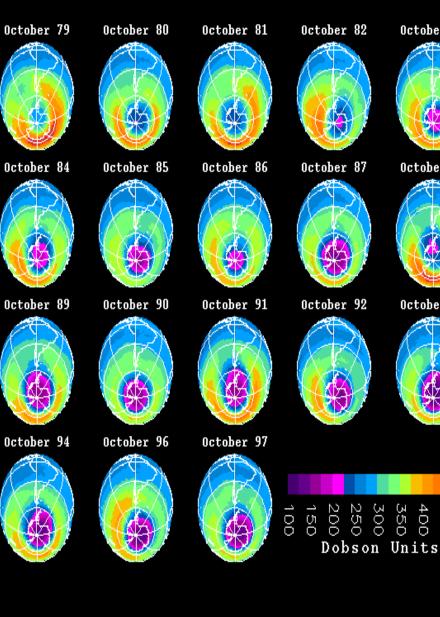
1969

OZONE DEPLETION

Not a layer...

Chloroflourocarbons (CFC's)

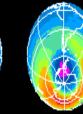



from aerosol sprays-breaks apart ozone into O2 and a free radical

• "PFC's" have been proposed to re-unite the ozone

●Lack of UV protection→skin cancer, harm food crops, destroy phytoplankton (largest CO2 absorbers)

Antarctic Spring "hole"


TOMS Total Ozone Monthly Averages

October 8

October 8

October 87

October 92

250

003 50

October 9

450 400

FEEDBACK LOOPS

WATER: Atmosphere → water → atmosphere

- Condensing to form rain, running off into oceans, evaporating or collecting in deposits
- Can also leave oceans through tectonic/volcanic activity
- Carbon Dioxide—LIFE has affected the atmosphere!
- ●CO2 \rightarrow temperature!
- As forests bloomed and died, microbes decomposed material and released CO2
 - As layer upon layer of dead material piled up with no contact to Oxygen, level of CO2 dropped \rightarrow cooled the planet
 - +MY of heat/pressure, buried material is transformed into coal, petroleum and natural gas (hence FOSSIL fuel)

FEEDBACK-CONTINUED

- Oceanic carbon sinks-absorb the largest amount of CO2 (plankton)
 - Sequestering by rocks is slower than CO2 produced
 - ■Increases oceanic salinity→decrease in oceanic biosphere (everything dies)
 - Decrease in biosphere=less CO2 uptake
- Carbon dioxide+ water=carbonic acid
 - Absorbed by rocks through weathering

SUMMARY:

- Formation of the Atmosphere---life
- Layers of atmosphere
- Gases in the atmosphere
- Phase changes
- Water, the water cycle, and water storage
- Ozone, smog and temperature inversions
- Acid rain, black carbon and pollution
- Heat transfer, albedo vs. absorption
- FEEDBACK LOOPS—examples of