NOTES: Ch 8 – Metabolism and Enzymes

8.1 - METABOLISM	
Metabolism is the	
Metabolism arises from interactions between molecules within the cell	
Organization of the Chemistry of Life into Metabolic Pathways	
A metabolic pathway begins with a specific molecule and	
Each step is catalyzed by a	food the many molecules
Metabolism includes reactions that are:	molecules that form the cell
CATABOLIC pathways	
into simpler compounds	useful forms of
ANABOLIC pathways	CATABOLIC PATHWAYS Inst.
from simpler ones	heat
Forms of Energy	the many building blocks for biosynthesis
• Energy is the	resentance cale prooffly have for broad elemental prosected)
• Energy exists in various forms, some of which can perform work	
Kinetic energy is energy associated with	
-Heat (thermal energy) is kinetic energy associated with random movement of ato	oms or molecules
• Potential energy is energy that matter possesses because of its location or structure	
-Chemical energy is ()	_ available for release in a
chemical reaction	
•	
Energy Transformations:	
A closed system is isolated from its surroundings	
 In an open system, energy and matter can be transferred between the system and its s 	urroundings
Living things have order!this takes energy to achieve!	
8.2 – Free Energy	
• FREE ENERGY: the portion of a system's energy that is	
Systems tend to change spontaneously	(
Exergonic and Endergonic Reactions in Metabolism	
An <u>exergonic reaction</u> proceeds with a net	
and is spontaneous	
An endergonic reaction	_ from its surroundings
and is nonspontaneous	
8.4 - ENZYMES:	
Enzymes speed up metabolic reactions by lowering energy barriers	
A catalyst is a chemical agent that speeds up a reaction	
An enzyme is a	

Hydrolysis of	by the enzyme	is an example of an enzyme-
catalyzed reaction		
The Activation Energy Barrie	<u>er</u>	
Every chemical reaction bety	veen molecules involves	and
		he free energy of activation, or
Activation energy is often su	 pplied in the form of heat from the surro	oundings
How Enzymes Lower the E_A	Barrier:	† energy without enzyme
• Enzymes catalyze reactions	by	energy with enzyne
• Enzymes do not affect the ch	nange in free-energy (ΔG); instead, they	y hasten reactions that
would occur eventually anyway	y	energy of
Substrate Specificity of Enzy	<u>/mes</u>	progress of reaction
The reactant that an enzyme	acts on is called the enzyme's	
The enzyme binds to its sub-	strate, forming an	
• The	is the region on the	enzyme where the substrate binds
ENZYMES are very selective	e for which reaction they will catalyze	
• ENZYMES are not changed	or "used up" by a reaction;	
	enzyme which binds to the substrate	
-is usually a		
-determines enzyme's	specificity	
		site and shape of substrate
("Lock-and-Key" analo		
		(a) Lock-end-key model Active site Substrates
• INDUCED FIT : a change in	the shape of an enzyme's active site,	Enzyme Enzyme Produci
which is induced by the substra	ate	Enzyme Enzyme-substrate Enzyme Product complex (unchanged) (b) Induced-fit model Substrates
• Induced fit of a substrate brin	ngs chemical groups of the	Substrates
active site into positions that e	nhance their ability to catalyze	Enzyme Enzyme-substrate Enzyme Product
the reaction		
Catalysis in the Enzyme's A	ctive Site:	
• In an enzymatic reaction, the	substrate binds to the active site	
• The active site can lower an	E _A barrier by	
-		
-		
-Providing a favorable	microenvironment	
-Covalently bonding to	the substrate	
Enzyme Reaction Rate: Substrate Concentration:		
-the higher the substrate conce	entration,	

-if the substrate concentration is high enough, the enzyme is saturated; in this case, the increased by	reaction rate can be
Factors Affecting Enzyme Activity	
1) Temperature:	× = optimal temperature
-as temp increases,	leactio leactio
-if temp gets too high, enzyme denatures and	Rate of reaction
-optimal range for human enzymes:	20 30 40 50
2) pH:	Temperature / °C
-optimal range for most enzymes: pH 6-8	optimal range for most human enzymes
-some enzymes operate best at extremes of pH (e.g. digestive enzyme	nx.t.
pepsin, found in the acidic environment of the stomach, works best at pH 2)	rate of rxn
	рН
3) Cofactors: small non-protein molecules	
-may bind to active site or substrate	
-some are inorganic (e.g. Zn, Fe, Cu)	
-some are organic and are called coenzymes (e.g. vitamins)	
4) Enzyme inhibitors:	
-COMPETITIVE INHIBITORS: chemicals that resemble an enzyme's normal substrate	and compete with it for the
active site	competitive substrate is inhibitor blocked
→	inhibitor blocked
(example:)	enzyme
	Competitive inhibition
-NONCOMPETITIVE INHIBITORS : enzyme inhibitors that do not enter the active site, _	
molecule	Non-competitive inhibition
→ cause enzyme to change its shape so active site cannot bind substrate	
(less effective!)	
→ may act as metabolic poisons (e.g. DDT, some antibiotics)	Naccompetity sibilities
8.5 - Regulation of enzyme activity helps control metabolism	X = inhibited enzyme molecules (1/3 here) The remainder bind substrate and behave normally (2/3) Total activity is inhibited by 1/3 here.

- Chemical chaos would result if a cell's metabolic pathways were not tightly regulated
- To regulate metabolic pathways, the cell switches on or off the genes that encode specific enzymes

Allosteric Regulation of Enzymes

- Allosteric regulation is the term used to describe cases where a protein's function at one site is affected by binding of a regulatory molecule at another site
- Allosteric regulation may either inhibit or stimulate an enzyme's activity

Allosteric Activation and Inhibition

- Most allosterically regulated enzymes are made from polypeptide subunits
 Each enzyme has _____ and ____ forms
 The binding of an activator of the enzyme
 The binding of an inhibitor _____ of the enzyme
- Cooperativity is a form of allosteric regulation that can amplify enzyme activity
- In cooperativity, binding by a substrate to one active site stabilizes favorable conformational changes at all other subunits

Feedback Inhibition

- Feedback inhibition prevents a cell from wasting chemical resources by synthesizing more product than is needed

Specific Localization of Enzymes Within the Cell:

- Structures within the cell help bring order to metabolic pathways
- Some enzymes reside in specific organelles, such as:

active enzyme

end product

metabolic pathway

inactive enzyme

end product
binds to enzyme