NOTES: CH 10, part 3 – Calvin Cycle (10.3) & **Alternative** Mechanisms of **C-Fixation** (10.4)

10.3 - The Calvin cycle uses ATP and NADPH to convert CO₂ to sugar

- The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle
- The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH

 Carbon enters the cycle in the form of CO₂ and leaves in the form of sugar

 $(C_6H_{12}O_6)$

ATP and NADPH are consumed

 the carbohydrate produced is actually a 3-C sugar: G3P

 to make 1 molecule of G3P the cycle occurs 3X (consumes 3CO₂)

The Calvin Cycle can be divided into 3 phases:

- 1) Carbon Fixation
- 2) Reduction
- 3) Regeneration of CO₂ acceptor (RuBP)

Phase 1: CO₂ Carbon + RUBISCO Fixation CO₂ RUBISCO RUBP

each CO₂ is <u>attached to a 5-C sugar</u>,
 <u>RuBP</u>, forming an unstable 6-C sugar which <u>immediately</u> splits into two 3-C molecules of 3-phosphoglycerate (this is done by the enzyme: <u>RUBISCO</u>)

Phase 1: Carbon Fixation

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Phase 2: Reduction

- each 3-phosphoglycerate receives an additional
 P_i from ATP, forming 1,3-bisphosphoglycerate
- Next, a pair of electrons from NADPH reduces the 1,3-bisphosphoblycerate to G3P

1,3 bisphosphoglycerate

3 phosphoglycerate

Copyright @ 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Phase 3: Regeneration of RuBP

 the 5 molecules of G3P are rearranged through a series of reactions to regenerate RuBP (this uses <u>an additional 3 ATP)</u>

**Reason for Cyclic electron flow!!

Calvin cycle consumes:

- <u>9 ATP</u>
- 6 NADPH

Leads to negative feedback!

Copyright @ 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Thank you, RUBISCO!

P.S. my #6 most favorite term in bio!

Net Equation for Photosynthesis:

$$6CO_2 + 6H_2O + light$$

$$energy$$

$$chloroplast$$

$$C_6H_{12}O_6 + 6O_2$$

10.4 - Alternative mechanisms of carbon fixation have evolved in hot, arid climates

- <u>Dehydration</u> is a problem for plants, sometimes requiring tradeoffs with other metabolic processes, especially photosynthesis
- On hot, dry days, <u>plants close stomata</u>, which conserves water but also limits photosynthesis
- The closing of stomata <u>reduces access to CO₂ and causes O₂ to build up</u>
- These conditions favor a seemingly wasteful process called <u>PHOTORESPIRATION</u>

PHOTORESPIRATION: consumes O₂, releases CO₂ into peroxisomes, generates no ATP, decreases photosynthetic output

Oxygen OUTCOMPETES CO₂ for the enzyme's active site!

Mechanisms of C-Fixation

• C₃ Plants: plants which combine CO₂ to RūBP, so that the first organic product of the cycle is the 3-C molecule 3-PGA (3-phosphoglycerate)

what we've just discussed!

- -examples: rice, wheat, soybeans
- -produce less food when their stomata close on hot, dry days; this deprives the Calvin cycle of CO₂ and photosynthesis slows down

Photorespiration: An Evolutionary Relic?

- In most plants (C₃ plants), initial fixation of CO₂, via rubisco, forms a three-carbon compound
- In photorespiration, rubisco adds O₂ to the Calvin cycle instead of CO₂
- Photorespiration consumes O₂ and organic fuel and releases CO₂ without producing ATP or sugar

Photorespiration: An Evolutionary Relic?

- Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the <u>atmosphere had far less O</u>₂ and more CO₂
- In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle

Alternative Mechanisms for C-Fixation

- 1. C₄ Plants: use an alternate mode of C-fixation which forms a 4-C compound as its first product
 - examples: sugarcane, corn, grasses
 - the 4-C product is produced in mesophyll cells
 - it is then <u>exported</u> (through plasmodesmata! ②)
 to bundle sheath cells (where the Calvin cycle occurs);

Has a higher affinity for CO_2 than RuBP does

2 different cells!

- once here, the 4-C product releases CO₂ which then enters the Calvin cycle to combine with RuBP (the enzyme rubisco catalyzes this step)
- this process keeps the levels of CO₂ sufficiently high inside the leaf cells, even on hot, dry days when the stomata close

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

- 2. CAM Plants: stomata are open at night, closed during day (this helps prevent water loss in hot, dry climates)
 - at night, plants take up CO₂ and incorporate it into organic acids which are stored in the vacuoles until day;
 - then CO₂ is released once the light reactions have begun again
 - examples: cactus plants, pineapples

Sugarcane Pineapple

(a) Spatial separation of steps

(b) Temporal separation of steps

C₄ and CAM Pathways are:

<u>Similar:</u> in that CO₂ is first incorporated into organic intermediates before Calvin cycle

• Different:

-in C₄ plants the first and second steps are separated **spatially (different locations)**-in CAM plants the first and second steps are separated **temporally (occur at different times)**

What happens to the products of photosynthesis?

- O₂: consumed during cellular respiration
- 50% of SUGAR made by plant is consumed by plant in <u>cellular respiration</u>
- some is incorporated into polysaccharides:
 - -cellulose (cell walls)
 - -starch (storage; in fruits,
 - roots, tubers, seeds)

The Importance of Photosynthesis: *A Review*

- The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds
- Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells
- In addition to <u>food production</u>, photosynthesis <u>produces the oxygen in our</u> <u>atmosphere!!</u>

The Importance of Photosynthesis: *A Review*

**no process is more important than photosynthesis to the welfare of life on Earth!...Thank you photosynthesis (& RUBISCO!). ©

