NOTES: 8.4 – Polar Bonds and Molecules

ELECTRONEGATIVITY:

- We've learned how valence electrons are shared to form covalent bonds between elements.
- So far, we have considered the electrons to be shared equally.
- However, in most cases, <u>electrons are</u>
 <u>NOT shared equally</u> because of a
 property called <u>electronegativity</u>.

• • • ELECTRONEGATIVITY:

- **ELECTRONEGATIVITY** = the tendency for an atom to attract electrons to itself when it is chemically combined with another element.
- The result: <u>a "tug-of-war" between the nuclei of</u> the atoms.

• • • ELECTRONEGATIVITY:

 Electronegativities are given numerical values (the most electronegative element has the highest value; the least electronegative element has the lowest value)

**See table 6.2 p. 181

- Most electronegative element: Fluorine (4.0)
- Least electronegative elements: Fr (0.7), Cs (0.7)

ELECTRONEGATIVITY:

- Notice the periodic trend:
 - → As we move from **left to right** across a row, electronegativity **increases** (metals have low values nonmetals have high values excluding noble gases)
 - → As we move down a column, electronegativity decreases.

**The higher the electronegativity value, the greater the ability to attract electrons to itself.

How are different bond types determined?

- Differences in electronegativity between atoms in a compound are used to determine bond type.
- Three types:
 - 1) Nonpolar covalent bond
 - 2) Polar covalent bond
 - 3) Ionic bond

 When the atoms in a molecule are the same (or have the same, or very close electronegativities), the bonding electrons are shared equally.

- Result: a nonpolar covalent bond
 - → Examples: O₂, F₂, H₂, N₂, CI₂

POLAR BONDS:

 When 2 different atoms are joined by a covalent bond, and the bonding electrons are shared unequally, the bond is a polar covalent bond, or POLAR BOND.

- The atom with the stronger electron attraction (the more electronegative element) acquires a slightly negative charge.
- The less electronegative atom acquires a slightly positive charge.

Example: HCI

**
$$\delta$$
 = "partial"

Electronegativities:

$$H = 2.1$$

$$CI = 3.0$$

$$\delta + H - CI^{\delta}$$

• Example: H₂O

• Electronegativities:

$$H = 2.1$$

$$O = 3.5$$

• Example: H₂O

• Electronegativities:

$$H = 2.1$$

$$O = 3.5$$

• Example: H₂O

• Electronegativities:

$$H = 2.1$$

$$O = 3.5$$

Predicting Bond Types: Electronegativities help us predict

the type of bond:

Electronegativity Difference	Type of Bond	Example
0.0 - 0.4	nonpolar covalent	H-H (0.0)
0.4 – 1.0	moderately polar covalent	HCI (0.9)
1.0 – 2.0	very polar covalent	HF (1.9)
≥ 2.0	ionic	Na+Cl ⁻ (2.1)

• • • POLAR MOLECULES:

- A polar bond in a molecule can make the entire molecule polar
- A molecule that has 2 poles (<u>charged</u> <u>regions</u>), like H-Cl, is called a dipolar molecule, or <u>dipole</u>.

• • • DIPOLE:

- A molecule that has <u>two electrically</u> <u>charged regions</u>, or poles
- EX: any molecule with a polar covalent bond
- Important Note:
 - Symmetry can cancel out dipoles
 - → EX: <u>CF</u>₄

• • • POLAR MOLECULES:

• Example: CO₂

$$\delta$$
- δ - Ω = Ω = Ω

shape: linear

*The bond polarities cancel because they are in opposite directions; CO₂ is a **nonpolar molecule**.

• • • POLAR MOLECULES:

- Water, H₂O, also has 2 polar bonds:
 - → But, the molecule is bent, so the bonds do not cancel.
 - → H₂O is a polar molecule.

How are different molecules held together in groups?

- Intermolecular forces (forces of attraction between molecules) <u>hold</u> groups of molecules together
- weaker than either an ionic or a covalent bond
- determine, among other things, whether a compound is a gas, liquid, or solid at a particular temp.

• • Intermolecular Forces:

Include:

- 1) van der Waals forces:
 - -Dispersion forces
 - -Dipole interactions
- 2) Hydrogen bonds

• • van der Waals Forces:

 general term used to describe the weakest intermolecular attractions including: dispersion forces and dipole interactions

• • Dispersion Forces:

- <u>Dispersion Forces</u> = weakest type of intermolecular attraction, caused by the movement of electrons
 - -more electrons leads to stronger force of attraction between molecules

EX:
$$F_2 < CI_2 < Br_2 < I_2$$

(F₂ and Cl₂ are **gases** at room temp; Br₂ is a **liquid**; l₂ is a **solid**)

• • • <u>Dipole Interactions:</u>

 <u>Dipole Interactions</u> = a weak intermolecular force resulting from the attraction of <u>oppositely charged regions of polar</u> <u>molecules</u>

**the slightly negative region of a polar molecule is attracted to the slightly positive region of another polar molecule

Dipole Forces

••••• = dipole force of attraction

Hydrogen Bonds:

- A relatively strong intermolecular force in which a hydrogen atom that is covalently bonded to a very electronegative atom is weakly bonded to an <u>unshared electron</u> <u>pair</u> of another electronegative atom in a nearby molecule
- EX: H₂O, DNA

Network Solids:

- Network solid = a substance in which all atoms are covalently bonded to each other
- EX: diamond, silicon carbide

• • and....

 Bond types and intermolecular attraction give rise to the physical and chemical properties of a compound!!

• **EX**:

Physical state, melting or boiling point, solubility, conductivity, etc.

Comparing Molecular & lonic Compounds:

	IONIC COMPOUNDS:	MOLECULAR COMPOUNDS:
Representative unit?	FORMULA UNIT	MOLECULE
Melting & boiling pts:	HIGH	LOW
Physical state at room temp:	SOLID	LIQUID or GAS
Formed by:	Transfer of electrons	Sharing of electrons
Formed from:	Metal + nonmetal	Nonmetal + nonmetal
Solubility in water:	Usually high	High to low
Conduct electricity?	Yes – good conductor	Poor to nonconducting