NOTES: 8.3 – VSEPR Theory

• • • Molecular Shape

 Lewis structures (electron dot structures) show the structure of molecules...but only in 2 dimensions (flat)...

• • • Molecular Shape

BUT, molecules are 3 dimensional!

- in 3D it is:
- a tetrahedron!

- = coming out of page
- = going into page
- = flat on page

Why do molecules take on 3D shapes instead of being flat?

- Valence Shell Electron Pair
 Repulsion theory
- "because electron pairs repel one another, molecules adjust their shapes so that the valence electron pairs are as far apart from another as possible."

Why do molecules take on 3D shapes instead of being flat?

- Valence Shell Electron Pair Repulsion theory
- Remember: both shared and unshared electron pairs will repel one another.

VSEPR Theory

- Predicts molecular geometry by examining bonding and non-bonding electron pairs of electrons on a molecule
 - → Bonding pair of electrons <u>electron pair</u> <u>used in a bond</u>
 - → Non-bonding pair of electrons <u>lone pair</u> of electrons not used in bonding
- The assumption is electron pairs will be spaced out <u>as far apart as possible</u> (negatives charges repel) giving rise to particular molecular geometries

How to determine molecule shape:

- Draw electron dot or structural formula
- Count the number of bonding and nonbonding pairs of electrons around the central atom (number of places electrons are found)
- Multiple (double, triple) bonds count as one "location" or "region"
- Apply the correct geometry predicted by <u>VSEPR Theory</u> based on the number of bonding and non-bonding electron pairs

1) <u>Linear</u>

1) Linear

• Example: CO₂

$$\dot{O} = C = \dot{O}$$

Two pairs of electrons Both bonding

Linear Bond angle 180° eg BeCl₂

5 Basic Molecule Shapes

2) **Bent**

2) Bent

Example: H₂O

**Notice electron pair repulsion!!!

Water

Tetrahedral Electron Pair Geometry

Bent Molecular Geometry

3) tetrahedral

3) tetrahedral

example: CH₄

4) Pyramidal

4) Pyramidal

Example: NH₃

(note: unshared pair of electrons repels, but is not considered part of overall shape; no atom there to contribute to the shape)

5) Trigonal planar

5) Trigonal planar

• Example: NO₃

Three pairs of electrons All bonding

Trigonal planar Bond angle 120° eg BF₃

Online molecule shape tutorial!