NOTES: 8.1 – Energy & Life (ATP)

<u>Cell Energy: **Energy is essential to life!!</u>	
all living things must be able to:	
	;
	for future use;
-	in a controlled way.
Which cellular activities require energy??	?
•	Production of proteins
•	<u>Storage of proteins</u>
•	
<u>Chemical Energy and ATP</u> –Energy can be stored in many forms: •	
••	(CHEMICAL BONDS!)
ATP -Adenosine TriPhosphate • Adenine (N) • 5-Carbon Sugar (Ribose) •	Triphosphate
Phosphate groups	Biochem at La Trobe OH OH
Phosphate groups are	
	(they do not like being too close to each other)
 This means that the 3 phosphate groups on ATP 	are in a arrangement!
ATP and Energy: • This unstable arrangement of the 3 phosphate g potential energy!	roups is like astored
 The third phosphate group is so eager to get aw energy is released 	ay from the other two that, when the bond is broken,
• What is left over is a free phosphate group and	a lower energy molecule:
ATP -Adenosine TriPhosphate • Adenine (N) • 5-Carbon Sugar (R	ibose) •
ADP -Adenosine DiPhosphate • Adenine (N) • 5-Carbon Sugar (R	ibose) •

 The characteristics of ATP make it an exceptionally useful molecule that is used by ______ as their basic energy source. ATP / ADP Cycle: When ATP is broken down, energy is ______ and _____. When ADP binds with another phosphate, energy is ______ and _____. • ATP: ATP -Efficient in _____ Food + Nutrients -Not very good for storing large amounts of energy long term. Nork Function -A single molecule of sugar stores more than 90 times a molecule of ATP. How do cells use the energy stored in ATP? ADP + P • Cellular proteins have a specific site where ATP can bind... When the ATP breaks down, the energy is transferred to the protein, enabling the protein to ______ ______, (e.g. ______, ATP **Battery analogy:** • Sitting on a table, batteries are not of much use... 0-0-0 • Put the batteries into a device (calculator, cell phone, etc.) Energy osine diphosphate (ADP) + Phosphate Adenosine triphosphate (ATP) and the stored energy in the battery is put to use! Partially • When the battery is "dead" it can be removed and recharged... • The energy stored in ATP is available when ATP is _____; **Heterotrophs & Autotrophs** Cells are not "born" with a supply of ATP...they must somehow ______! • Where do living organisms get the energy they use to produce ATP??? • the answer: _____ !! (well, molecules from food) • Examples: -zebra: eats plants (______) -cheetah: eats animals like zebras! (______) -mushroom: absorbs nutrients from decomposing / dead organisms (______) •Examples:

• Energy in ATP is ______ when it is converted to ADP (Fig. 8-2).

***green plants make their own food through the process of ______!