
NOTES: 7.1 – lons / lonic Compounds

Valence Electrons:

 the number of <u>valence electrons</u> determines the chemical properties of an element.

 Valence Electrons: The e- in the highest occupied energy level of an element's atoms.

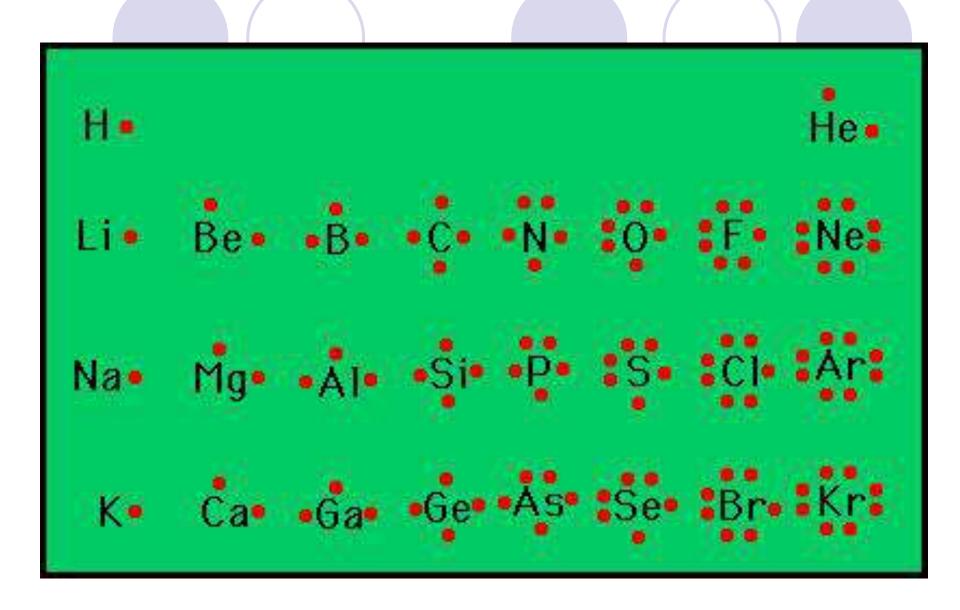
Valence Electrons:

 All elements in a particular group or family have the same number of valence electrons (and this number is <u>equal to the group</u> <u>number of that element</u>)

Examples:

- Group <u>1</u> elements (Na, K, Li, H): <u>1 valence e-.</u>
- Group 2 elements (Mg, Ca, Be): 2 valence e-.
- Group 17 (7A) elements (Cl, F, Br): 7 valence e-.

Valence Electrons in Each


— Croup															-		
1	Group																2
1	2											3	4	5	6	7	8
1	2											3	4	5	6	7	8
1	2											3	4	5	6	7	8
1	2											3	4	5	6	7	8
1	2											3	4	5	6	7	8
1	2											3	4	5	6		
																_	

ELECTRON DOT STRUCTURES:

- Electron dot structures show the valence electrons as dots around the element's symbol:
- Li
- B
- Si
- N
- O
- F
- Ne

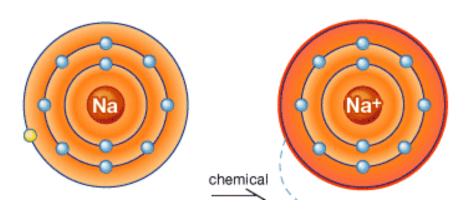
LEWIS STRUCTURES:

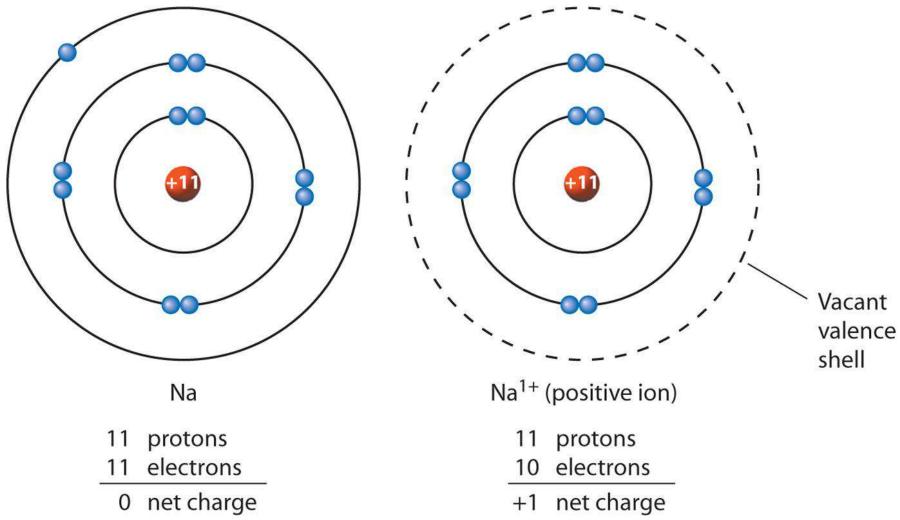
- Electron dot structures show the valence electrons as dots around the element's symbol:
- Li
- B
- Si
- N
- O
- F
- Ne

OCTET RULE:

- Noble gas atoms are very stable & therefore don't react or combine with other elements; they have 8 valence electrons (a "full" outer shell!)
- Octet rule: all representative elements will gain or lose (or share!) electrons to <u>form</u> an octet (8) of valence e⁻.

Atoms of <u>METALS</u> form <u>CATIONS</u>
 (positive ions) by losing electrons.


Na:


Na⁺:

 Atoms of <u>METALS</u> form <u>CATIONS</u> (positive ions) by losing electrons.

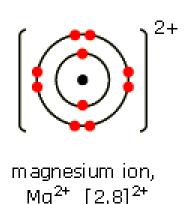
Na:

Na⁺:

© 2011 Pearson Education, Inc.

Atoms of <u>METALS</u> form <u>CATIONS</u>
 (positive ions) by losing electrons.


Mg:


 Mg^{2+} :

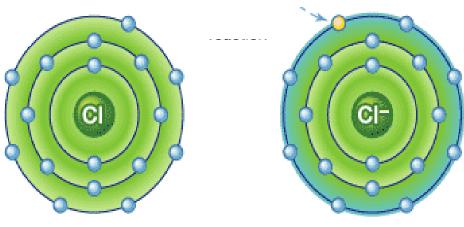
Atoms of <u>METALS</u> form <u>CATIONS</u>
 (positive ions) by losing electrons.

Mg: 2 valence e

Mg²⁺: 8 valence e⁻

 Atoms of <u>NONMETALS</u> form <u>ANIONS</u> (negative ions) by gaining electrons.

CI:


CI:

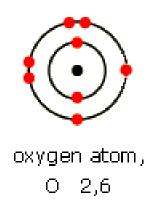
 Atoms of <u>NONMETALS</u> form <u>ANIONS</u> (negative) ions) by gaining electrons.

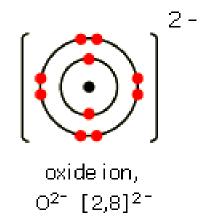
CI:

CI:

© 2007 Encyclopædia Britannica, Inc.

 Atoms of <u>NONMETALS</u> form <u>ANIONS</u> (negative ions) by gaining electrons.


O:


 O^{2-} :

 Atoms of <u>NONMETALS</u> form <u>ANIONS</u> (negative ions) by gaining electrons.

O: 6 valence e

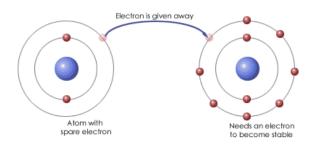
O²⁻: 8 valence e⁻

Which elements form ionic compounds and which elements form covalent (molecular) compounds??

General Rule of Thumb:

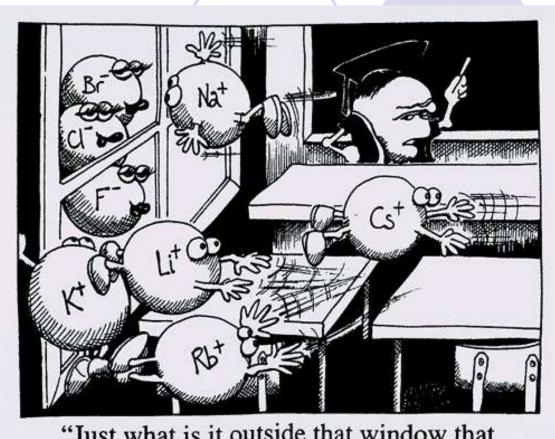
metal + nonmetal = **IONIC**

metal + polyatomic anion = **IONIC**


polyatomic cation + anion = **IONIC**

nonmetal + nonmetal = **COVALENT / MOLECULAR**

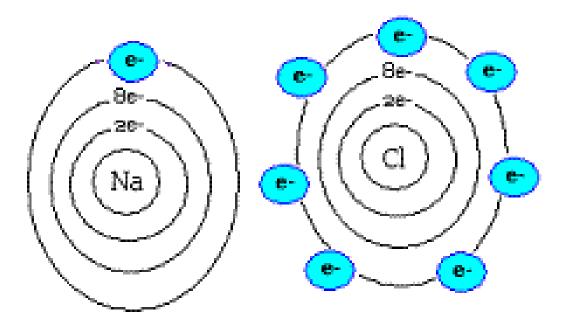
Why are ionic compounds so stable?


• IONIC BONDS:

- -metal plus a nonmetal
- -cations (+) plus anions (-)
- -opposite charges attract
- Examples:
 - → Na⁺ and Cl⁻ form NaCl
 - → Al³⁺ and Br⁻ form AlBr₃

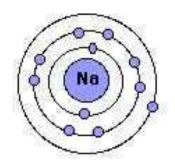
lonic Bonds:

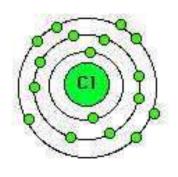
Isn't it ionic that opposites attract?


"Just what is it outside that window that you gentleman find so attractive?"

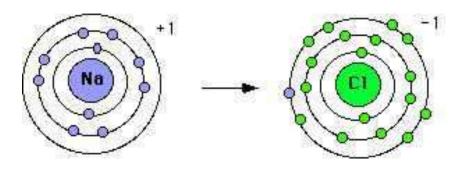
© 1993 Printed and Distributed by Cooks Engrances, Ltd. - Change, B.

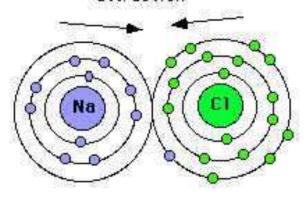
IONIC BONDS:


- Cations and anions have opposite charges
- lonic compounds are <u>electrically neutral</u> groups of ions joined together by electrostatic forces.
 - → the positive charges of the cations must EQUAL the negative charges of the anions.


Ionic Bond

e- Negative Electrons


Na-Sodium Cl-Cholerine


atoms

electron transfer

ions

electrostatic attraction

NaC1

ionic bond

This is a nondirectional bond; a polygamous bond

Examples of Ionic Compounds:

Na

CI

Na+Cl- = NaCl

Αl

Br

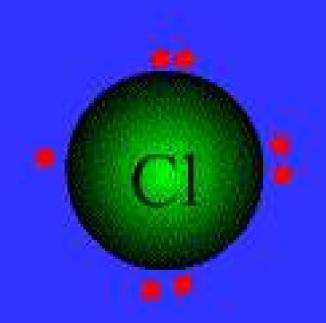
 $Al^{3+}Br^{-} = AlBr_{3}$

K

O

 $K^+O^{2-} = K_2O$

Mg


N

 $Mg^{2+}N^{3-} = Mg_3N_2$

K

P

 $K^+P^{3-}=K_3P$

