NOTES: 25.1 - Nuclear Chemistry & Types of Radiation

NUCLEAR CHEMISTRY:

branch of chemistry dealing with the <u>decay</u>
 <u>of unstable isotopes</u> to form a stable
 nucleus

Nuclear Reactions:

- Involve changes in the composition of nuclei
- Accompanied by the <u>release of tremendous</u> <u>amounts of energy</u>

FYI: Historical Perspective

• Henri Becquerel

 1896 - <u>Discovers</u> <u>natural radioactivity</u>

FYI: Historical Perspective

- Marie Sklodowska, Polish chemist marries Pierre Curie, French physicist
- Marie died from leukemia caused by her exposure to radiation (1934)
- Pierre was killed while crossing the street when he was hit by a vegetable wagon in 1906
- with Becquerel, they won the Nobel Prize in 1903

FYI: Historical Perspective

- Ernest Rutherford
- 1899 Discovers <u>alpha</u>, <u>beta and gamma radiation</u>

RADIATION:

- The penetrating rays and particles <u>emitted by</u> <u>a radioactive source</u>
- <u>Radioactive decay</u> the spontaneous emission of <u>radiation by an unstable nucleus</u>; the rate of decay is unaffected by <u>temperature, pressure, or catalyst</u>
- <u>Radioisotope</u> an isotope that has an <u>unstable nucleus</u> and undergoes <u>radioactive</u> <u>decay</u>

The neutron-to-proton ratio determines the stability of the nucleus:

- For low atomic #'s: equal #'s of protons and neutrons
- Above atomic #20: more neutrons than protons

Nuclei whose neutron-to-proton ratio is unstable undergo radioactive decay by emitting 1 or more particles and/or electromagnetic rays:

Types of Radiation:

Туре:	Alpha	Beta	Gamma
Composition	Alpha Particle (helium nucleus)		
Symbol	α, ⁴ He		
Charge	2+		
Mass	4		
Penetrating Power	Low (0.05 mm)		
Shielding	Paper, clothing		

Types of Radiation:

Туре:	Alpha	Beta	Gamma
Composition	Alpha Particle	Beta Particle	
	(helium nucleus)	(electron)	
Symbol	α, ⁴ He	β	
Charge	2+	1-	
Mass	4	1/1837	
Penetrating	Low	Moderate	
Power	(0.05 mm)	(4 mm)	
Shielding	Paper, clothing	Metal foil	

Types of Radiation:

Туре:	Alpha	Beta	Gamma
Composition	Alpha Particle (helium nucleus)	Beta Particle (electron)	High-Energy Radiation
Symbol	α, ⁴ He	β	Y
Charge	2+	1-	0
Mass	4	1/1837	0
Penetrating Power	Low	Moderate	Very high
	(0.05 mm)	(4 mm)	Entire body
Shielding	Paper, clothing	Metal foil	Lead, concrete (incomplete)

Radioactivity

Comparing penetrating ability...

Balancing Nuclear Equations:

 Transmutation – <u>conversion from one element</u> to another

+

-

• Examples:

Nitrogen-14 + _____ → ____

Fluorine-18 ->

Uranium-239 🗲

Balancing Nuclear Equations:

- Transmutation <u>conversion from one element</u> <u>to another</u>
- Examples:

Nitrogen-14 + Alpha particle → Fluorine-18

Fluorine-18 → <u>Oxygen-17</u> + <u>Proton</u>

Uranium-239 → <u>Neptunium-239</u> + <u>Beta particle</u>

Alpha:
 Uranium-238 → ____+ α particle

• Beta:

1 Neutron → 1 Proton + 1 Electron

¹⁴C → ____ +

• Gamma (and Alpha at the same time): Thorium-230 \rightarrow _____+ α + γ

Alpha: Uranium-238 → <u>Thorium-234</u> + α particle

• Beta:

- 1 Neutron → 1 Proton + 1 Electron
- ¹⁴C \rightarrow <u>14N</u> + <u> β emission</u>
- Gamma (and Alpha at the same time): Thorium-230 \rightarrow Radium-226 + α + γ

Alpha Particle Decay:

• Example 1: Radium-226 transmutates by alpha decay. Write the nuclear equation that represents this process.

Beta Particle Decay:

• Example 2: Write the nuclear equation for the beta-decay of boron-12.

 $^{12}_{5}B \rightarrow ^{12}_{6}C + \beta$

or

Gamma Radiation:

• Example 3: Write the nuclear equation representing gamma radiation given off by the unstable radionuclide cobalt-60.

Gamma Radiation:

• Example 3: Write the nuclear equation representing gamma radiation given off by the unstable radionuclide cobalt-60.

 $^{60}_{27}CO \rightarrow ^{60}_{27}CO + \gamma$

Bismuth-214 \rightarrow _____+ α

Gallium-70 + $\alpha \rightarrow$

Iridium-193 \rightarrow _____ + γ (energy!)

Silicon-27 \rightarrow Phosphorus-27 + β

Bismuth-214 \rightarrow Thallium-210 + α

Gallium-70 + $\alpha \rightarrow$

Iridium-193 \rightarrow _____ + γ (energy!)

Silicon-27 \rightarrow <u>Phosphorus-27</u> + β

Bismuth-214 \rightarrow Thallium-210 + α

Gallium-70 + $\alpha \rightarrow Arsenic-74$

Iridium-193 \rightarrow _____ + γ (energy!)

Silicon-27 \rightarrow Phosphorus-27 + β

Bismuth-214 \rightarrow Thallium-210 + α

Gallium-70 + $\alpha \rightarrow Arsenic-74$

Iridium-193 \rightarrow Iridium-193 + γ (energy!)