NOTES: 12.2 – Stoichiometric Calculations (moles, mass, volume)

STOICHIOMETRY

the study of the quantitative aspects of chemical reactions.

Stoichiometry

 recall: STOICHIOMETRY = the calculation of quantities in chemical reactions using balanced equations

Mole-Mole Ratios:

- we've already covered how a balanced equation can be interpreted in terms of:
 - -particles (molecules, atoms, form. units) and
 - -moles

$$4AI + 3O_2 \rightarrow 2AI_2O_3$$

$4AI + 3O_2 \rightarrow 2AI_2O_3$

4 atoms Al react with
3 molecules O₂ to produce
2 form. units Al₂O₃

OR

4 mol Al react with3 mol O₂ to produce2 mol Al₂O₃

$4AI + 3O_2 \rightarrow 2AI_2O_3$

Example: How many moles of aluminum are needed to form 3.7 mol Al₂O₃?

$$\frac{3.7 \text{ mol Al}_2\text{O}_3}{2 \text{ mol Al}_2\text{O}_3} \times \frac{4 \text{ mol Al}}{2 \text{ mol Al}_2\text{O}_3}$$

 $4AI + 3O_2 \rightarrow 2AI_2O_3$

Example: How many moles of aluminum are needed to form 3.7 mol Al₂O₃?

$$\frac{3.7 \text{ mol Al}_2\text{O}_3}{2 \text{ mol Al}_2\text{O}_3} \times \frac{4 \text{ mol Al}}{2 \text{ mol Al}_2\text{O}_3}$$

7.4 mol Al

Other Calculations:

 when we actually measure out chemicals in the lab, we can't measure MOLES, but we can measure MASS (grams)

 also, recall that can define a mole in terms of:

```
mass (grams) – <u>molar mass</u>
volume (liters) – <u>molar volume</u> (22.4 L)
# of particles – <u>Avogadro's #</u> (6.02 x 10<sup>23</sup>)
```

Example #1:

$$Zn + 2HCI \rightarrow ZnCI_2 + H_2$$

5.0 g Zn will react with hydrochloric acid to produce how much zinc chloride?

Write down the given. Include units.

5.0 g Zn

change to moles, as before (using molar mass)...

$$5.0g \left(\frac{1mole\,Zn}{65.4\,g\,Zn}\right)$$

Next, use the mole ratio from the balanced equation...

$$\frac{\text{Zn} + 2\text{HCI} \rightarrow \text{ZnCl}_2 + \text{H}_2}{5.0 g \left(\frac{1 mole Zn}{65.4 g Zn}\right) \left(\frac{1 mole ZnCl_2}{1 mole Zn}\right)}$$

This gets us to moles of ZnCl₂

Now, change moles of ZnCl₂ to grams. As before.

$$5.0g \left(\frac{1mole\,Zn}{65.4\,g\,Zn}\right) \left(\frac{1mole\,ZnCl_2}{1mole\,Zn}\right) \left(\frac{136g\,ZnCl_2}{1mole\,ZnCl_2}\right)$$

Check that the units cancel...

Now, solve the equation...

$$5.0 g \left(\frac{1 mole Zn}{65.4 g Zn}\right) \left(\frac{1 mole ZnCl_2}{1 mole Zn}\right) \left(\frac{136 g ZnCl_2}{1 mole ZnCl_2}\right)$$

= 10.4 g ZnCl₂

Example #2:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

What volume (at STP) of water vapor will be produced when 10.0 g of CH₄ are burned?

$$10.0\,g\,CH_4 \left(\frac{1mole\,CH_4}{16g\,CH_4}\right)$$

This gets us to moles CH₄

$$CH_{4} + 2O_{2} \rightarrow CO_{2} + 2H_{2}O$$

$$10.0 g CH_{4} \left(\frac{1 mole CH_{4}}{16 g CH_{4}}\right) \left(\frac{2 moles H_{2}O}{1 mole CH_{4}}\right)$$

This represents moles H₂O...now convert to volume (liters of water) using molar volume

Solve the equation....

$$10.0 g CH_{4} \left(\frac{1 mole CH_{4}}{16 g CH_{4}}\right) \left(\frac{2 moles H_{2}O}{1 mole CH_{4}}\right) \left(\frac{22.4 \, liters \, H_{2}O}{1 mole \, H_{2}O}\right)$$

more practice problems!

1) What mass of CO is required to react with 146 grams of iron (III) oxide?

$$Fe_2O_3$$
 + 3CO \rightarrow 2Fe + 3CO₂

$$\frac{146 \text{ g Fe}_{2}\text{O}_{3}}{159.6 \text{ g Fe}_{2}\text{O}_{3}} \times \frac{3 \text{ mol CO}}{1 \text{ mol Fe}_{2}\text{O}_{3}} \times \frac{28 \text{ g CO}}{1 \text{ mol CO}} =$$

76.8 g CO

2) What mass of iron (III) oxide is required to produce 8.65 grams of carbon dioxide?

$$Fe_2O_3$$
 + 3CO \rightarrow 2Fe + 3CO₂

$$\frac{8.65 \text{ g CO}_{2}}{44 \text{ g CO}_{2}} \times \frac{1 \text{ mol CO}_{2}}{44 \text{ g CO}_{2}} \times \frac{1 \text{ mol Fe}_{2}O_{3}}{3 \text{ mol CO}_{2}} \times \frac{159.6 \text{ g Fe}_{2}O_{3}}{1 \text{ mol Fe}_{2}O_{3}} =$$

10.5 g Fe₂O₃

3) What volume of NO_2 gas will be produced when 105.5 L of O_2 gas react with excess NO? (assume STP)

$$2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)}$$

$$\frac{105.5 \text{ L O}_2}{22.4 \text{ L O}_2} \times \frac{1 \text{ mol O}_2}{22.4 \text{ L O}_2} \times \frac{2 \text{ mol NO}_2}{1 \text{ mol O}_2} \times \frac{22.4 \text{ L NO}_2}{1 \text{ mol NO}_2} =$$

211.0 L NO₂