NOTES: 12.1-12.2 – Mole Ratios (Using Balanced Equations)

Balanced Equations
 a balanced chemical equation is like a recipe that tells a chemist:
-what quantities of to mix; and
-what quantities of to expect
• the quantity of a reactant or product is usually measured in or;
 however, it could be measured in liters (gases), tons, individual molecules, etc.
STOICHIOMETRY:
• STOICHIOMETRY =
 for chemists, it is a form of bookkeeping
<u>"everyday" example:</u>
 a cookie recipe calls for (among other ingredients): -1.25 cups butter -1 cup brown sugar -1 cup sugar -2 eggs
 according to the recipe, this will make 48 cookiesso, we could summarize this:
1.25 cups butter 1 cup sugar 2 eggs 1 cup brown sugar 2.5 cups flour
 all of these amounts may be used as ratios, or conversion factors, in calculations
 if you wanted to make 96 cookies, how many cups of flour would you need?
ANSWER:
 assuming you had excess amounts of all ingredients, what is the maximum number of cookies you could make with 3.50 cups of butter?
ANSWER:
Balanced Chemical Equations
 we can make similar interpretations (and calculations) using a balanced chemical equation

- consider the production of ammonia from nitrogen and hydrogen:

equation:_____

We can interpret this equation in terms of: N₂ 3H₂ 2NH₃ + ➔ • particles: _____ of N₂ reacts with _____ of H₂ to produce of NH₃ (a) **Example:** How many H₂ molecules are required to react with 15 molecules of N₂? ANSWER: We can also interpret this equation in terms of: N₂ 3H₂ 2NH₃ + → • MOLES: of N₂ reacts with _____ of H₂ to produce of NH₃ (a Example: How many moles of NH₃ will be produced when 37.0 moles of H₂ react? (assume there is enough N2 to react) ANSWER: Examples for you to try: • Iron (III) oxide reacts with carbon monoxide to form iron and carbon dioxide. Equation: How many CO molecules are required to react with 25 particles of Fe₂O₃? ANSWER: How many iron atoms can be produced by the reaction of 2.5 x 10⁵ particles of Fe₂O₃? ANSWER:_____ consider the following reaction: $2H_2S + 3O_2 \rightarrow 2SO_2$ + 2H₂O How many moles of O₂ are required to react with 22.5 moles of H₂S?

ANSWER: