NOTES: 13.3 - MUTATIONS

MUTATIONS:

• MUTATIONS = changes in the DNA sequence that affect genetic information

MUTATIONS:

**any change in the DNA sequence can also change the protein it codes for

Mutations in Reproductive Cells:

- if a mutation occurs in a gene in a sperm or egg cell, the altered gene would become part of the genetic makeup of the offspring
- the result could be:
- → a new trait (beneficial or harmful);
- a protein that does not work correctly;
- miscarriage

Mutations in Body Cells:

- if a mutation occurs in a nonreproductive cell (such as skin or muscle cell), it will not be passed to offspring
- the result could be:
- impaired functioning of the cell;
- → loss of control of cell division;
- → cancer.

Frequency of Cancer 2005 Distribution of Primary Diagnosis

Types of GENE MUTATIONS:

 Point Mutation: a change in a single base pair in DNA

```
Thr Pro Glu Glu
...A C T C C T G A G G A G...
Codon # 4 5 6 7
...A C T C C T G T G G A G...
Thr Pro Yal Glu
```

3 types of POINT MUTATIONS:

1) SUBSTITUTION

- -One base pair is <u>replaced</u> by another base pair
- -Might result in the wrong amino acid (why only "might"?)
 - Redundancy of the genetic code!

Redundancy of the code:

Canada base of sades

		Second ba	se of codon		
	U	С	Α	G	
U	UUU Phenylalanine UUC phe	UCU Serine	UAU Tyrosine UAC tyr	UGU Cysteine UGC cys	U C
U	UUA Leucine UUG leu	UCA ser	STOP codon	UGG Tryptonphan	A G
С	CUU Leucine CUA leu CUG	CCU CCC Proline CCA pro	CAU Histidine CAC his CAA Glutamine CAG gin	CGU Arginine CGA arg	U C A G
А	AUC Isoleucine ile AUA Methionine met (start codon)	ACC Threonine ACA thr ACG	AAU Asparagine AAC asn AAA Lysine AAG Iys	AGU Serine AGC ser AGA Arginine AGG arg	U C A G
G	GUU GUC Valine GUA val GUG	GCU GCC Alanine GCA ala GCG	GAU Aspartic acid GAC asp GAA Glutamic acid GAG glu	GGC Glycine	U C A G

3 types of POINT MUTATIONS:

2) BASE PAIR INSERTION

= <u>insertion of 1 or more</u> nucleotide pairs into a gene

3 types of POINT MUTATIONS:

3) BASE PAIR DELETION

= <u>deletion of 1 or more</u> <u>nucleotide pairs</u> from the gene

Frameshift mutations:

- Both base pair deletions and base pair insertions can result in a <u>shift in the reading</u> <u>frame</u>
- That can cause the wrong protein to be made!

- ex: THE <u>C</u>AT ATE THE RAT what happens
- If we delete "C" → THE ATA TET HER AT-...

Frameshift mutations:

 nearly every amino acid in the protein after the mutation is changed!

SUMMARY: Types of Mutations

- Gene mutations
 - Base pair substitution
 - Base pair insertion
 - Base pair deletion

FRAMESHIFT MUTATIONS

DNA (one strand)

Normal

What type of mutation?

Chromosomal Mutations

- Chromosomal Mutations:
 - –Deletion
 - -**Duplication**
 - -Inversion
 - -Translocation

Chromosomal Mutations:

 DELETION: lose all or part of a chromosome

ABC-DEFAC-DEF _____

<u>DUPLICATION</u>: <u>segment of a chromosome</u>
 <u>is repeated</u>

ABC-DEFABBC-DEF

Deletion Mutation

Chromosomal Mutations:

 INVERSION: chromosome segment becomes oriented in reverse direction

ABC-DEF ABE-DCF

Inversion Mutation

Chromosomal Mutations:

 TRANSLOCATION: part of 1 chromosome breaks off & attaches to another nonhomologous chromosome (segment is usually exchanged)

ABC-DEF → ABC-JKL

GH-IJKL \longrightarrow GH-IDEF

Translocation

Chromosomal mutations could also involve having the incorrect # of chromosomes...

-ex: 47 human chromosomes instead of 46

-we will discuss this in chapter 12

Chromosomal Mutations (change in number)

 NONDISJUNCTION: the failure of the chromosomes to separate properly during cell division

(specifically, MEIOSIS, the type of cell division that produces the gametes)

Nondisjunction

Causes of Mutations:

MUTAGEN: any agent that can cause a change in DNA

MUTAGENS:

1) HIGH ENERGY RADIATION:

- > X-rays
- > cosmic rays
- > ultraviolet light
- > nuclear radiation

MUTAGENS:

2) CHEMICALS:

- > dioxins
- > asbestos
- > benzene
- > formaldehyde
- > cigarette smoke

Lungs of a smoker("brown") Cancer

