Unit 1: Basic Chemistry for Biology Note Packet 1: Composition of Matter, Energy and Solutions

Matte a.	er Defin	ition:		
b.	. Every	thing in the universe is		
c.	Biologists study chemistry because all living things are made of the same kinds of matter.			
d.	Eleme i.	ents Pure substances that		
	iii.	Over have been discovered of mass in all living things is made from elements: , , and Chemical symbols on the periodic table give you information about the element.		
	v.	6 ————————————————————————————————————		
		1. All atoms of an element have the number of protons. 2. In an atom with no charge () the number of protons equals		
	vi.	Atomic mass:		
	vii.	Examples: 1. Mg		

	b. Atomic number:	
	c. Number of protons:	
	d. Number of electrons:	
	e. Atomic mass:	
~ 1	f. Number of neutrons:	
2. Cl		
	a. Name:	
	b. Atomic number:	
	c. Number of protons:	
	d. Number of electrons:	
	e. Atomic mass:	
3. Co	f. Number of neutrons:	
3. Cs		
	a. Name:	
	b. Atomic number: c. Number of protons:	
	d. Number of electrons:	
	e. Atomic mass:	
	f. Number of neutrons:	
	. Transer of fleatrons.	
e. Atoms i. The simp	plest particle of an element that	
	-	
	6 protons	
	+ 6 neutrons	
	electron	
	+ proton	
ii. The Nucl	roton Carbon atom	
	roton Carbon atom	
ii. The Nucl 1 2.	Carbon atom	
1	Carbon atom Carbon atom are found here	
1	Carbon atom Carbon atom are found here	
1	Carbon atom Carbon atom leus are found here a. b. Number of protons =	
1 2	Carbon atom leus are found here a.	
1 2	are found here a. b. Number of protons = are found here a are found here	

2 are	found here
ab. In a normal	com: number of protons =
out). 3. 1 st Energy Level	(they cancel each other
4. 2 nd , 3 rd , 4 th , etc. End	electrons gy Levels o electrons
Nu	Nu = Nucleus 1. The 1st Shell: Max. 2 electrons 2rd Shell: Max. 8 electrons 3rd Shell: Max. 8 electrons 3rd Shell: Max. 8 electrons b. Examples:

ii. Neon

iii. Potassium

2.	The _	Model
	a.	Shows only the valence electrons
		i
	b.	Examples:
		i. Hydrogen

iii. Potassium

f.	Compounds	
	i. A pure substance made of	
	ii. Example: H ₂ O	
	 The ratio of hydrogen to oxygen is always 	
	2 hydrogens for every oxygen.	
	iii. Under natural conditions, most elements	_ exist
	iv. Elements want to be	
	 To be stable you must have a 	<u> </u>
	2. Because most elements do not naturally have a full	outer energy
	level, they form with	other elements
	to get closer to filling the outer shell.	
	3. If an element already has a full outer shell it is	
	for it to bond with other elements.	
g.	Chemical Bonds	
Ο,	i. Two major types	
	1	
	2.	
	ii. Covalent Bonds	
	1. These form when	
	2. Example:	·
	a. H (hydrogen) and O (oxygen)	
	b. H starts with valence electron (in	energy level,
	so its goal is to get).	
	c. O starts with valence electron (in	energy
	level, so its goal is to get).	

d.	Cl goes from having	valence electrons	to valence
	electrons.		
e.	They both become		
f.	Na goes from having	protons and _	
	electrons to having	protons and	electrons.
	i. Becomes a	ion.	
g.	Cl goes from having	protons and	
	electrons to having	protons and	electrons.
	i. Becomes a	ion.	

`	Energy
۷٠	LHEIRY

- a. Definition:
- b. Life processes involve chemical reactions which
- b. Life processes involve ellermedi redections
- c. Chemical Reactions
 - i. Shown by an equation
 - ii. Ex:
 - iii. Reactants
 - 1. On the _____ side of the equation

d. _____

- iv. Products
 - 1. On the _____ side of the equation
 - a. _____

- v. Balancing Chemical Equations
 - 1. The number of each kind of atom must be _____ on either side of the arrow.
 - 2. Ex:

C: C: O: H: H:

Balanced? YES or NO

3. Ex:

H: H: O: O:

Balanced? YES or NO

To balance: add coefficients to either side and re-tally numbers of atoms until they become balanced. Guess and check!

- vi. Exergonic Reactions
 - 1. Reactions that ______.
- vii. Endergonic Reactions
 - 1. Reactions that ______.

he amount of energy that is needed for

- ______
 - a. Reduce the amount of activation energy that is needed.

Τ

3. _____

а	A type	of cataly	vst that	is foun	d in
a.	ALYPE	Oi Catai	yst tilat	is rouri	u III

b. A single organism may have of different enzymes each used for specific chemical reactions.

3. Solutio

b. Parts of a solution:

i. _

1. The substance

1. The substance

iii. Example:

- 1. When sugar (______) and water (______) are mixed the _____ forming a sugar water ______.
- c. Concentration of a solution
 - i. The measurement of the

ii. Example:

- 1. 2 percent saltwater solution contains _____ grams of salt dissolved in _____ of water.
- 2. To increase the concentration of salt, keep the 100 ml of water the same, but ______.

d. pH of a solution

- i. The pH measures ______ (hydroxide) ions compared to ______ (hydrogen) ions in a solution.
- ii. More OH- = _____
- iii. More H+ = _____
- iv. pH scale
 - 1. _____ = acidic (more H+ then OH-)
 2. ____ = neutroal (H+ = OH-)

