Naming Ionic Compounds

What are the structural units that make up ionic compounds and how are they named?

Why?

When working in chemistry, it is often convenient to write a chemical in symbols. For example we might write down the substance table salt as NaCl. In talking about chemistry however, it is a bit tacky to say "en-ay see-ell" when we want to refer to a substance. Also, in formal writing we should use the name of the compound rather than its symbols. Therefore we need to learn how to say the proper names of ionic substances.

Model 1 – Ion Charges for Selected Elements

1	H⁺		_									
2	Li ⁺	Be ²⁺							N ³⁻	O ²⁻	F ¹⁻	
3	Na+	Mg ²⁺	Т	ransition	elemen	ts	Al ³⁺		P ³⁻	S ²⁻	Cl1-	
4	K⁺	Ca ²⁺	Fe ²⁺ Fe ³⁺	Ni ²⁺ Ni ³⁺	Cu ⁺ Cu ²⁺	Zn ²⁺					Br ¹⁻	
5	Rb⁺	Sr ²⁺			Ag ¹⁺			Sn ²⁺ Sn ⁴⁺			I ¹⁻	
6		Ba ²⁺				Hg ₂ ²⁺ Hg ²⁺		Pb ²⁺ Pb ⁴⁺				

- 1. Based on the information in Model 1:
 - a. Identify three elements that form only one cation.
 - b. Identify three elements that form only one anion.
 - c. Identify three elements that form more than one cation.
 - d. In what region of the periodic table are these "multiple ion" elements usually located?
- 2. Consider the ions of potassium (K) and sulfur (S). Write chemical formulas for all possible ionic compounds involving these ions, using the simplest ratio(s) of potassium (K) and sulfur (S). Keep in mind that the sum of the charges in an ionic compound must equal zero.
- 3. Consider the ions of iron (Fe) and sulfur (S). Write chemical formulas for all possible ionic compounds involving these ions, using the simplest ratio(s) of iron (Fe) and sulfur (S). Keep in mind that the sum of the charges in an ionic compound must equal zero.

Anions

Model 2 - Ionic Compound Names (Metals that form one ion)

NaCl	Sodium chloride	Zn ₃ P ₂ Zinc phosphide
CaS	Calcium sulfide	Al ₂ O ₃ Aluminum oxide
Ag_2S	Silver sulfide	SrCl ₃ Strontium chloride

- 4. Circle the symbol for the metal in each of the compounds in Model 2.
- 5. Which element comes first in the name and formula of the compounds in Model 2—the metal or the nonmetal?
- 6. Use the table of ions in Model 1 to answer the following questions:
 - a. In the compound zinc phosphide, what is the charge on the zinc ion?
 - b. In the compound zinc phosphide, what is the charge on the phosphide ion?
- 7. Explain why a 3 to 2 ratio of ions is necessary for the compound zinc phosphide.
- 8. The compound carbon dioxide has a name that gives you a hint as to how many oxygen atoms are in the compound. Is there anything in the name "zinc phosphide" that indicates there are three zinc and two phosphorus ions in the formula unit?
- 9. Is there any other ratio of zinc and phosphorus ions that could exist? For instance, could you have Zn₂P or ZnP₂? Explain your answer.
- 10. Explain why you don't need to specify the number of ions in the compound when you are naming ionic substances like those in Model 2.
 - 11. Model 2 is labeled "Metals that form one ion." What other metals that also form only one ion could be included in the Model 2 list? Model 1 may be helpful in this regard.
 - 12. Describe how the names of the nonmetal elements in Model 2 are changed when they are in their anion forms.
 - 13. Name the following ionic compounds using what you learned from Model 2.

Li₂O

 $\mathrm{MgF}_{\scriptscriptstyle 2}$

 Al_2S_3

 K_3N

14. Provide the chemical formula for each of the following ionic compounds.

Barium chloride

Magnesium oxide

15. Consider the two chemical formulas you wrote in Question 3 for compounds of iron and sulfur. Would the name "iron sulfide" be sufficient to uniquely identify either of those compounds? Explain.

Read This!

When the metal in an ionic compound always forms an ion with the same charge, you need not indicate that charge as part of the compound name. However, some atoms have the ability to form more than one type of ion. This can make naming confusing. You can't simply refer to a compound of copper and oxygen as "copper oxide." People won't know which compound you are referring to—CuO or Cu_2O .

Model 3 – Ionic Compound Names (Metals that form multiple ions)

Cu ₂ O Copper(I) oxide	PbO Lead(II) oxide
CuO Copper(II) oxide	PbO ₂ Lead(IV) oxide
SnF ₂ Tin(II) fluoride	FeCl ₂ Iron(II) chloride
SnF ₄ Tin(IV) fluoride	FeCl ₃ Iron(III) chloride

- 16. Model 3 is labeled "Metals that form multiple ions." What other metals that form multiple ions could be included in Model 3? Model 1 may be helpful in this regard.
- 17. Describe the most obvious difference between the names in Model 3 and those in Model 2.
- 18. Do the Roman numerals in the names in Model 3 relate to the number of cations or number of anions in the formula unit? Support your answer by citing two specific examples.
- 19. Keeping in mind that the sum of the charges in an ionic compound must equal zero, use the chemical formulas in Model 3 to answer the following questions:
 - a. Identify the charge on the copper cations in copper(I) oxide and copper(II) oxide, respectively.
 - b. Identify the charge on the iron cations in iron(II) chloride and iron(III) chloride, respectively.
- 20. What do the Roman numerals in the compounds described in Question 19 indicate?

21. Fill in the table below using what you've learned from Model 3.

Compound	Charge on Cation	Name of the Compound
PbCl ₄	Pb ⁴⁺	Lead(IV) chloride
Fe ₂ O ₃		
SnO		
CuBr ₂		

22. For each of the compounds in the table below, determine the type of metal in the compound and then name the compound using the correct naming method.

	Metal forms only one ion	Metal forms multiple ions	Name
CaBr ₂			
MgO			
Ag ₃ N			
SnCl ₂			
CuF ₂			
K ₃ P			
Zn_3N_2			
HgO			

Extension Questions

Model 4 – Traditional Names for Ionic Compounds

Metals that form one ion	Metals that form multiple ions		
NaCl Sodium chloride	Cu ₂ O Cuprous oxide		
CaS Calcium sulfide	CuO Cupric oxide		
Ag ₂ S Silver sulfide	SnF ₂ Stannous fluoride		
Zn ₃ P ₂ Zinc phosphide	SnF ₄ Stannic fluoride		

- 23. Look at the traditional names in Model 4 for ionic compounds containing metals that form only one ion. What are the similarities and differences between the traditional naming system in Model 4 and the stock naming system in Model 2 for these kinds of ionic compounds?
- 24. Look at the traditional names in Model 4 for ionic compounds containing metals that form multiple ions. What are the similarities and differences between the traditional naming system in Model 4 and the stock naming system in Model 3 for these kinds of ionic compounds?
- 25. Do the "-ous" and "-ic" endings in the compound names in Model 4 refer to a particular metal ion charge? Explain.
- 26. Examine the traditional ion names shown below for selected metals. Write a rule for using the "-ous" and "-ic" endings for metal ions.

 Cu^{2+} cupric Fe^{3+} ferric Sn^{4+} stannic Pb^{4+} plumbic Cu^{1+} cuprous Fe^{2+} ferrous Sn^{2+} stannous Pb^{2+} plumbous

27. Complete the table and write the traditional name for each ionic compound.

	Metal forms only one ion	Metal forms multiple ions	Name
CaBr ₂			
MgO			
Ag_3N			
SnCl ₂			
CuF ₂			
K ₃ P			
Zn_3N_2			
HgO			

28. Write the chemical formula for each ionic compound below.

aluminum bromide	
stannic sulfide	
iron(II) chloride	
lithium oxide	
plumbous oxide	

29. Throughout this activity you have developed a process for naming an ionic compound when given a formula. On a separate sheet of paper, create a flowchart of questions that you might ask yourself when naming an ionic compound.