Naming Covalent Compounds When it is all NONMETALS

Compounds vs Molecules

10A Compound is any substance composed of two or more DIFFERENT elements.
10A Molecule is any substance composed of two or more atoms COVALENTLY BONDED.

Properties of Covalent Compounds

OGenerally Low Melting and Boiling Points
OGenerally Soft and Flexible
Tend to be Flammable
Don't conduct electricity
Normally won't dissolve in water

Types of Covalent Bonds

- Formed between two nonmetals in 14, 15, 16, and 17
- Nonmetals have high electronegativity values
- Electrons are shared

single bond shares one pair electrons double bond shares two pairs electrons triple bond shares three pairs electrons

Diatomic Elements

Gases that exist as diatomic molecules
are H₂, F₂, N₂, O₂, Cl₂, Br₂, I₂
They are simply given their elements name.
Exist this way only when not in compounds

Learning Check

Use the name of the element to name the following diatomic molecules.

H₂hydrogen

N₂nitrogen

Cl_{2_____}

02_____

I_{2_____}

Naming Covalent Compounds

Two nonmetals

- Name each element
- End the last element in -ide
- Add prefixes to show more than 1 atom Prefixes mon1 hexa6 di2hepta7
- tri3octa8
- tetra4nona9
- penta5deca10

Learning check

Fill in the blanks to complete the following names of covalent compounds.

- CO carbon ____oxide
- CO₂carbon
- **PCI**₃phosphorus _____chloride
- CCl₄carbon _____chloride
- N₂O_____oxide

Learning Check

A.P₂O₅1) phosphorus oxide
2) phosphorus pentoxide
3) diphosphorus pentoxide

B.Cl₂O₇1) dichlorine heptoxide
2) dichlorine oxide
3) chlorine heptoxide

C. Cl₂1) chlorine
2) dichlorine
3) dichloride

Review of Valence Electrons

Remember from the electron chapter that valence electrons are the electrons in the **OUTERMOST** energy level... that's why we did all those electron configurations! **10** B is $1s^2 2s^2 2p^1$; so the outer energy level is 2, and there are 2+1 = 3 electrons in level 2. These are the valence electrons! **10** Br is [Ar] 4s² 3d¹⁰ 4p⁵ How many valence electrons are present?

Review of Valence Electrons

Number of valence electrons of a main (A) group atom = Group

	/ 1 € 1A	Alkalin arth n	e netals													Н	aloger	Noble gases ¹ ¹⁵ 18 8A
	1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
Alkali metals	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
	11 Na	12 Mg	3	4	5	6 Tr	7 ansitic	8 n met	9 als	10	11	12	13 Al	14 Si	15 P	16 \$	17 Cl	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
	87 Fr	88 Ra	89 Ac [†]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub						
	*Lanthanides				58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
[†] Actinides				es	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Lewis Structures

Drawings of covalent compounds
Dots are used for nonbonding electrons
Lines are used for bonding pairs of electrons

Output All atoms must have 8 electrons in some combination except H which has 2

Lone pairs versus bonding pairs

Lone pairs are pairs of electrons not in bonding

Bonding pairs are pairs of electrons involved in bonding

Steps Building a Lewis Structure

- Decide on the central atom; never H. Why?
 - If there is a choice, the central atom is atom of lowest affinity for electrons. (Most of the time, this is the least electronegative atom...the single atom is normally the lowest or the one further to the left on the Periodic Table.)
- 2. Add up the number of valence electrons that can be used.

Building a Dot Structure

Form a single bond between the central atom and each surrounding atom (each bond takes 2 electrons!)
 4.Remaining electrons form LONE PAIRS to complete the octet as needed (or duet in the case of H).

Building a Dot Structure

Check to make sure there are 8 electrons around each atom except
H. H should only have 2 electrons.
This includes SHARED pairs.

6. Move nonbonding pairs if necessary to make double or triple bonds to insure the octet rule

- Central Atom. In this case it would have to be N, because H NEVER can be
- Count Electrons.
 - N = 5
 - H = 3 (1) = 3
 - -5+3=8

3. Place the N in the middle and attach the H's

4. Place the unshared pairs

- Count your electrons and check your work
 - 3 (2) + 2 = 8
- Add double or triple bonds if needed
 - None needed here so you are done

Example – CO₂

- Central Atom: C is the single atom and farthest to the right SO "C" it is.
- Count the electrons
 - C = 4 and O = 6 x 2
 - 16 electrons total

Example – CO₂

Place the C in the middle and attach the O's

Example $- CO_2$

Place the unshared pairs

$$\mathbf{O}_{\mathbf{O}}^{\mathbf{O}} - \mathbf{O}_{\mathbf{O}}^{\mathbf{O}}$$
:

Example – CO₂

- Count your electrons insure all except H have 8
 - C only has 4 so it is short, we will need more bonds

$$\begin{vmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{vmatrix} = \mathbf{C} = \begin{vmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{vmatrix}$$

Example – CO₂

Move electrons around and make double bonds, then recount

7. Now all have 8, so we are done

Example SO₃⁻²

- Central Atom here is "S"
- Count electrons:
 - S = 6
 - O = 6 x 3 = 18
 - -2 means add two more
 - 6 + 18 + 2 = 26 total

Example SO_3^{-2}

Place the S in the middle and attach the O's

Example: SO₃⁻²

- Place the extra electrons
- CHECK: All have 8 and I have placed
 26 so I AM ALMOST DONE

Example: SO₃⁻²

One More little thing since it has a charge
You have to put it in brackets and right the charge outside

VSEPR

Valence Shell Electron Pair Repulsion
Molecules take on shapes because electrons are all negative and attempt to repel as far away as possible.
This Repulsion results in molecules taking on 3 dimensional Shapes

Shapes

The Shapes are dependent on the areas of electron concentration

- A single pair is an area of concentration NON Bonding area
- A single bond counts as an area of concentration BONDING AREA
- A double bond counts as an area of concentration BONDING AREA
- A triple bond count as an area of concentration BONDING AREA

SHAPES

SHAPE	BONDING AREAS	NON BONDING AREAS
LINEAR	2	0
BENT	2	1 or 2
TRIGONAL PLANAR	3	0
TRIGONAL PRYMIDAL	3	1
TETRAHEDRA	4	0

Shapes - Examples

Carbon Dioxide

$$\mathbf{\overset{II}{\mathbf{0}}=\mathbf{C}=\overset{II}{\mathbf{0}}$$

Two Bonding Areas, no Non bonding areas – Linear

Shapes - Example

Sulfite (SO₃⁻²)

Three Bonding areas, 1 Non bonding area = Trigonal Pyramidal