AP Calculus

1)

If a trapezoidal sum overapproximates $\int_0^4 f(x) dx$, and a right Riemann sum underapproximates $\int_0^4 f(x) dx$, which of the following could be the graph of y = f(x)?

Units are gal min =

The rate at which water is being pumped into a tank is given by the continuous,

increasing function R(t). A table of selected values of R(t), for the time interval $0 \le t \le 20$ minutes, is shown below.

Note: Intervals are not the

width

2)

diff. widths $\rightarrow w=4583$								
t (min)	0	4	9	17	20			
R(t)(gal/min)	25	28	33	42	46			
•		ht	ht	ht	ht.			

a. Use a right Riemann sum with four subintervals to approximate the value of:

 $\int_0^{20} R(t) dt.$

It it helps, you may draw?

Is your approximation greater or less than the true value? Give a reason for your answer.

Approx area = 4(28) + 5(33) + 8(42) + 3(46) = 751 gallons
This is an increasing function, so a right Riemann
sum would overestimate the true value.

3) The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For 0 < t < 12, the graph of r is concave down. The table below gives selected values of the rate of change, r'(t), of the radius of the balloon over the time interval $0 \le t \le 12$. The radius of the balloon is 30 feet when t = 5.

t (minutes)	O	2	5	7	11	12
r'(t) (feet per minute)	5.7	4.0	2.0	1.2	0.3	0.5

- 10. The graph of function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?
 - (A) $\int_{1}^{3} f(x)dx$
 - (B) Left Riemann sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length
- (C) Right Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
- (D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length 0
 - (E) Trapezoidal sum approximation of $\int_{1}^{3} f(x)dx$ with 4 subintervals of equal length $cose_{1}$ to a dval