More Fun with Rates and the FTC AP Calculus

Name: ANSWERS

The rate at which people enter an amusement park on a given day is modeled by the function E defined by

$$E(t) = \frac{15600}{\left(t^2 - 24t + 160\right)}$$

The rate at which people leave the same amusement park on the same day is modeled by the function L defined by

$$L(t) = \frac{9890}{\left(t^2 - 38t + 370\right)}.$$

Both E(t) and L(t) are measured in people per hour and time t is measured in hours after midnight. These functions are valid for $9 \le t \le 23$, the hours during which the park is open. At time t = 9, there are no people in the park.

- (a) How many people have entered the park by 5:00 P.M. (t = 17)? Round answer to the nearest whole number.
- (b) The price of admission to the park is \$15 until 5:00 P.M. (t = 17). After 5:00 P.M., the price of admission to the park is \$11. How many dellars are collected from admissions to the park on the given day? Round your answer to the nearest whole number.
- (c) Let $H(t) = \int_{0}^{t} (E(x) L(x)) dx$ for $0 \le t \le 23$. The value of H(17) to the nearest whole number is 3725. Find the value of H'(17) and explain the meaning of H(17) and H'(17) in the context of the park.
- (d) At what time t, for $9 \le t \le 23$, does the model predict that the number of people in the park is a maximum?

a)
$$\int_{q}^{17} E(t) = 6004.270$$
 about 6004 people

b)
$$\int_{17}^{23} E(t) = 1271.283$$

C)
$$H'(t) = E(t) - L(t)$$

 $H'(17) = E(17) - L(17) = -380.281$ people/hour
 $H(17)$ is the number of people in the park at 5 PM.
 $H'(17)$ is the rate at which the # of people is changing
measured in people/horse.

d) Find max of
$$H(t)$$
 $H(t) = \int_{1}^{t} (E(x) - L(x)) dx$
 $H'(t) = E(t) - L(t)$ critical point

 $E(t) - L(t) = 0$ at $t = 15.795$

endpt

 $Q = \frac{1}{2} \frac{1}$