\mathbf{N}	[a	th	44	5/1
IV	10		4	,-

Practice Problems Curve Sketching, Optimization & Linear Approx Date: _____

Name:	

Scientific	Calculator	ONLY.

Answer each question. Show all work. Round answers to three decimal places.

1) You are designing a rectangular poster to contain $50 in^2$ of printing with a 4-inch margin at the top and bottom and a 2-inch margin at each side. What overall dimensions will minimize the amount of paper used? [Please conclude with a sentence.]

2) **Related Rates.** A young woman and her boyfriend plan to elope, but she must rescue him from his mother who has locked him in his room. The young woman has placed a 20 foot long ladder against his house and is knocking on his window when his mother begins pulling the bottom of the ladder away from the house at a rate of 3 feet per second. **How fast is the top of the ladder (and the young couple) falling when the bottom of the ladder is 12 feet from the bottom of the wall?** [include units] Is the ladder falling at a constant rate? _____

3) a) Use linear approximation to approximate the quantity $(1.98)^3$ using $f(x) = x^3$ and a = 2.

4) True/False.

____a) If f is a differentiable function and f(2) = 6 and $f'(2) = -\frac{1}{2}$, then the approximate value of f(2.1) is 5.95.

____b) Given that a function f is twice differentiable and concave down at a = 5. Using linear approximation to find f(5.1) our estimate will be an overestimate.

_____c) Relative extrema can only occur where the first derivative is zero.

____d) If f''(x) > 0, then f has a relative minimum at x = 1.

b) Find the actual value to 3 decimal places.

5) Solve for a and b given that the given function is continuous and differentiable:

$$f(x) = \begin{cases} ax+b, & x > -1\\ bx^2 - 3, & x \le -1 \end{cases}$$

6) Use the graph of the equation y = f(x) in the accompanying figure to find the signs of dy/dx and d^2y/dx^2 at the points A, B, and C.

- d^2y/dx^2 ____

7) Find the shortest distance from the curve $y = \sqrt{x}$ to the point (4, 0).

- ____8) Given function f defined by $f(x) = (1-x)^3$. What are all value(s) of c, in the closed interval [0,3], that satisfy the conditions of the *Mean Value Theorem*?
 - a) c = 1, only
- b) c = 2, only
- c) c = 0, only
- d) c = 0 and c = 2
- e) c=1 and c=2
- _____9) On what interval is $f(x) = \frac{2x-3}{x^2}$ increasing?
 - a) $(-\infty, 3]$
 - b) $(0, \infty)$
 - c) $[3, \infty)$
 - d) (0,3]
 - e) $(-\infty, -3]$

- y = f'(x)
- _____10) The graph of the *derivative on function* f is shown. Which of the following could be a graph of function f.

