# Momentum and Impulse

### Momentum

- Momentum can be defined as "mass in motion." All objects have mass; so if an object is moving, then it has momentum
- Momentum depends upon the variables mass and velocity
- Momentum = mass \* velocity
- p = m \* v



where m = mass and v=velocity

# Momentum is a vector quantity

- To fully describe the momentum of a 5-kg bowling ball moving westward at 2 m/s, you must include information about both the magnitude and the direction of the bowling ball
- p = m \* v
- **p** = 5 kg \* 2 m/s west
- p = 10 kg \* m / s west



### Elastic and inelastic Collisions

- When a Ball hits the ground and sticks, the collision would be totally inelastic
- When a Ball hits the ground and bounces to the same height, the collision is elastic
- All other collisions are partially elastic collision

# **Check Your Understanding**

- Determine the momentum of a ...
- 60-kg halfback moving eastward at 9 m/s.
  -p = mv = 60 kg ( 9 m/s ) Given: m = 60Kg
  - 540 kg \*m /s east v= 9 m/s
- 1000-kg car moving northward at 20 m/s.
   p = mv = 1000 kg ( 20 m/s )
  Find :
  - 20,000 kg \*m /s north

Given: m = 1000Kg

#### Momentum and Impulse Connection

 To stop such an object, it is necessary to apply a force against its motion for a given period of time

# $J = F(t) = m \Delta v$

Impulse = Change in momentum

# **Check Your Understanding**

- If the halfback experienced a force of 800 N for 0.9 seconds to the north, determine the impulse
   Given: F = 800 N
- $J = F(t) = m \Delta v$  t = 0.9 s
- 800N (0.9s) = 720 N\*s Find :
- the impulse was 720 N\*s or Impulse (J)
- a momentum change of 720 kg\*m/s

### Impulse Question #2

- A 0.10 Kg model rocket's engine is designed to deliver an impulse of 6.0 N\*s. If the rocket engine burns for 0.75 s, what is the average force does the engine produce? Given: F = 800 N
- J = F (t) = m D v
- 6.0 N\*s = F (0.75s)
- 6.0 N\*s/ 0.75s = F

• 8.0 N = F

t = 0.9 s Find :

Average Force

### Impulse Question # 3

- A Bullet traveling at 500 m/s is brought to rest by an impulse of 50 N\*s. What is the mass of the bullet?
   Given: v = 500 m/s
- $J = F(t) = m \Delta v$   $J = 50 N^*s$
- 50 N\*s = m ( 500 m/s 0 m/s ) Find :
- 50 kg-m/s<sup>2</sup>\*s / 500 m/s = m
- .1 kg = m

## Summary

- the impulse experienced by an object is the force\*time
- the momentum change of an object is the mass\*velocity change
- the impulse equals the momentum change