Molecular Biology of the Gene

Chapter 10

- Viruses are biological saboteurs
 - Hijacking the genetic material of host cells in order to reproduce themselves
- Viruses provided some of the earliest evidence
 - That genes are made of DNA

Griffith Discovers Transformation

- 1928
- Attempting to develop a vaccine he isolated two strains of pneumonia
 - Rough strain was harmless
 - Smooth strain was pathogenic

Griffith Discovers Transformation

Copyright @ 2001 by Benjamin Cummings, an imprint of Addison Wesley.

Transformation

 The harmless R cells had been transformed by material from the dead S cells

 Descendents of the transformed cells were also pathogenic

10.1 Experiments showed that DNA is the genetic material

- The Hershey-Chase experiment showed that certain viruses reprogram host cells
 - To produce more viruses by injecting their DNA

Bacteriophages

Viruses that infect bacteria

Consist of protein and DNA

 Inject their hereditary material into bacteria

The Hershey-Chase experiment

10.2 DNA and RNA are polymers of nucleotides

- DNA is a nucleic acid
 - Made of long chains of nucleotide monomers

DNA has four kinds of nitrogenous bases A, T, C, and G

RNA is also a nucleic acid But has a slightly different sugar And has U instead of T

DNA is a double-stranded helix

- James Watson and Francis Crick
 - Worked out the three-dimensional structure of DNA, based on work by Rosalind

Hydrogen bonds between bases Hold the strands together Each base pairs with a complementary partner A with T, and G with C

- DNA replication depends on specific base pairing
 - DNA replication
 - Starts with the separation of DNA strands
 - Then enzymes use each strand as a template
 - To assemble new nucleotides into complementary strands

Parental molecule of DNA

Both parental strands serve as templates

Two identical daughter molecules of DNA

- DNA replication is a complex process
 - Due in part to the fact that some of the helical DNA molecule must untwist

- DNA replication
 - Begins at specific sites on the double helix

- Each strand of the double helix
 - Is oriented in the opposite direction (antiparallel)

- Using the enzyme DNA polymerase
 - The cell synthesizes one daughter strand as a continuous piece
- The other strand is synthesized as a series of short pieces
 - Which are then connected by the enzyme DNA ligase

Overall direction of replication