## CALCULUS AB

PRACTICE EXAM Section I, Part B Time – 50 minutes Number of questions – 17

## A CALCULATOR IS REQUIRED ON THIS PART OF THE EXAM.

- 1. A particle moves along the x-axis so that at any time  $t \ge 0$  its velocity is given by  $v(t) = t^2 \ln(t+2)$ . What is the acceleration of the particle at time t = 6?
  - (A) 1.500 (B) 20.453
- (C) 29.453
- (D) 74.680
- (E) 133.417
- 2. If  $\int_0^3 f(x)dx = 6$  and  $\int_3^5 f(x)dx = 4$ , then  $\int_0^5 (3+2f(x))dx = 6$ 
  - (A) 10 (B) 20
- (C) 23
- (D) 35
- (E) 50

- 3. For t > 0 hours, H is a differentiable function of t that gives the temperature, in degrees Celsius, at an Arctic weather station. Which of the following is the best interpretation of H'(24)?
  - (A) The change in temperature during the first day
  - (B) The change in temperature during the 24<sup>th</sup> hour
  - (C) The average rate at which the temperature changed during the 24<sup>th</sup> hour
  - (D) The rate at which the temperature is changing during the first day
  - (E) The rate at which the temperature is changing at the end of the 24<sup>th</sup> hour
- 4. A spherical tank contains 81.637 gallons of water at time t = 0 minutes. For the next 6 minutes, water flows out of the tank at the rate of  $9\sin(\sqrt{t+1})$  gallons per minute. How many gallons of water are in the tank at the end of the 6 minutes?
  - (A) 36.606
- (B) 45.031
- (C) 68.858
- (D) 77.355
- (E) 126.668



- 5. A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of  $\int_0^1 f(x)dx$ , each using the same number of subintervals. The graph of the function f is shown in the figure above. Which of the sums give an underestimate of the value of  $\int_0^1 f(x)dx$ ?
  - I. Left sum
  - II. Right sum
  - III. Trapezoidal sum
  - (A) I only
- (B) II only
- (C) III only (D) I and III only
- (E) II and III only
- 6. The first derivative of the function f is given by  $f'(x) = x 4e^{-\sin(2x)}$ . How many points of inflection does the graph of f have on the interval  $0 < x < 2\pi$ ?
  - (A) 3
- (B) 4
- (C) 5
- (D) 6
- (E) 7
- 7. If f is a continuous function on the closed interval [a, b], which of the following must be true?
  - (A) There is a number c in the open interval (a, b) such that f(c) = 0.
  - (B) There is a number c in the open interval (a, b) such that f(a) < f(c) < f(b).
  - (C) There is a number c in the open interval [a, b] such that  $f(c) \ge f(x)$  for all x in [a, b].
  - (D) There is a number c in the open interval (a, b) such that f'(c) = 0.
  - (E) There is a number c in the open interval (a, b) such that  $f'(c) = \frac{f(b) f(a)}{b a}$ .

| х    | 2.5   | 2.8   | 3.0 | 3.1   |
|------|-------|-------|-----|-------|
| f(x) | 31.25 | 39.20 | 45  | 48.05 |

- 8. The function f if differentiable and has values as shown in the table above. Both f and f' are strictly increasing on the interval  $0 \le x \le 5$ . Which of the following could be the value of f'(3)?
  - (A) 20
- (B) 27.5
- (C) 29
- (D) 30
- (E) 30.5



- 9. The graph of f', the derivative of the function f, is shown above. On which of the following intervals is f decreasing?
  - (A) [2, 4] only
  - (B) [3, 5] only
  - (C) [0, 1] and [3, 5]
  - (D) [2, 4] and [6, 7]
  - (E) [0, 2] and [4, 6]



- 10. The base of a loudspeaker is determined by the two curves  $y = \frac{x^2}{10}$  and  $y = -\frac{x^2}{10}$  for  $1 \le x \le 4$ , as shown above. For this loudspeaker, the cross sections perpendicular to the *x*-axis are squares. What is the volume of the loudspeaker, in cubic units?
  - (A) 2.046 (B) 4.092
- (C) 4.200
- (D) 8.184
- (E) 25.711

| х    | 3  | 4  | 5  | 6  | 7  |
|------|----|----|----|----|----|
| f(x) | 20 | 17 | 12 | 16 | 20 |

- 11. The function f is continuous and differentiable on the closed interval [3, 7]. The table gives selected values of f on this interval. Which of the following statements must be true?
  - I. The minimum value of f on [3, 7] is 12.
  - II. There exists c, for 3 < c < 7, such that f'(c) = 0.
  - III. f'(x) > 0 for 5 < x < 7.
  - (A) I only
- (B) II only
- (C) III only
- (D) I and III only (E) I, II, and III



- 12. The figure above shows the graph of f', the derivative of the function f, on the open interval -7 < x < 7. If f' has four zeros on -7 < x < 7, how many relative maxima does f have on -7 < x < 7?
  - (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5
- 13. The rate at which water is sprayed on a field of vegetables is given by  $R(t) = 2\sqrt{1+5t^3}$ , where t is in minutes and R(t) is in gallons per minute. During the time interval 0 < t < 4, what is the average rate of water flow, in gallons per minute?
  - (A) 8.458 (B) 13.395
- (C) 14.691
- (D) 18.916
- (E) 35.833

| х | f(x) | f'(x) | g (x) | g'(x) |
|---|------|-------|-------|-------|
| 1 | 3    | -2    | -3    | 4     |

- 14. The table above gives values of the differentiable functions f and g and their derivatives at x = 1. If h(x) = (2f(x)+3)(1+g(x)), then h'(1) =
  - (A) -28
- (B) -16
- (C) 40
- (D) 44
- (E) 47
- 15. The functions f and g are differentiable, and f(g(x)) = x for all x. If f(3) = 8 and f'(3) = 9, what are the values of g(8) and g'(8)?
  - (A)  $g(8) = \frac{1}{3}$  and  $g'(8) = -\frac{1}{9}$  (B)  $g(8) = \frac{1}{3}$  and  $g'(8) = \frac{1}{9}$
- (C) g(8) = 3 and g'(8) = -9

- (D) g(8) = 3 and  $g'(8) = -\frac{1}{9}$
- (E) g(8) = 3 and  $g'(8) = \frac{1}{9}$
- 16. A particle moves along the x-axis so that its velocity at any time t > 0 is given by  $v(t) = 5te^{-t} 1$ . At t = 0, the particle is at position x = 1. What is the total distance traveled by the particle from t = 0 to t = 4?
  - (A) 0.366
- (B) 0.542
- (C) 1.542
- (D) 1.821
- (E) 2.821
- 17. Let f be the function with first derivative defined by  $f'(x) = \sin(x^3)$  for  $0 \le x \le 2$ . At what value of x does f attain its maximum value on the closed interval  $0 \le x \le 2$ .
  - (A) 0
- (B) 1.162
- (C) 1.465
- (D) 1.845
- (E) 2