AP Calculus Calculator M.C. Review

e) None of these

2. Differentiate: $y = \frac{1 + \cos x}{1 - \cos x}$ a) -1 b) $-2\csc x$ c) $2\csc x$ d) $\frac{-2\sin x}{(1 - \cos x)^2}$ e) None of these 3. Find $\frac{dy}{dx}$ for $y = (x^3)\sqrt{x+1}$. $\frac{3x^2}{2\sqrt{x+1}}$ $\frac{x^2(7x+6)}{2\sqrt{x+1}}$ $\frac{3x^2}{\sqrt{x+1}}$

a)
$$\frac{3x^2}{2\sqrt{x+1}}$$
 b) $\frac{x^2(7x+6)}{2\sqrt{x+1}}$ c) $3x^2\sqrt{x+1}$ d) $\frac{7x^3+x^2}{2\sqrt{x+1}}$ e) None of these

- 4. Find f'(x) for $f(x) = (2x^2 + 5)^7$. a) $7(4x)^6$ b) $(4x)^7$ c) $28x(2x^2 + 5)^6$ d) $7(2x^2 + 5)^6$ e) None of these
- 5. A point moves along a curve $y = 2x^2 + 1$ in such a way that the y value is decreasing at the rate of 2 units per second. At what rate is x changing when $x = \frac{3}{2}$? a) increasing $\frac{1}{3}$ unit/sec b) decreasing $\frac{1}{3}$ unit/sec c) decreasing $\frac{7}{2}$ unit/sec d) increasing $\frac{7}{2}$ unit/sec e) None of these
- 6. The position equation for the movement of a particle is given by $s = (t^2 1)^3$ when s is measured in feet and t is measured in seconds. Find the acceleration at two seconds.

a) 342 units/sec² b) 18 units/sec² c) 288 units/sec²
d) 90 units/sec² c) None of these
7. Find
$$\frac{dx}{dx}$$
 if $y^2 - 3xy + x^2 = 7$
 $\frac{2x + y}{3x - 2y}$ $\frac{3y - 2x}{b} - 2y - 3x$ c) $\frac{2x}{3 - 2y}$ $\frac{2x}{d}$ $\frac{2x}{y}$ c) None of these
8. The position function for a particular object is
a) The initial velocity is -35. b) The velocity is constant.
c) The velocity at time $t = 1$ is 23. d) The initial position is $-\frac{35}{2}$. e) None of these
9. Differentiate: $y = \sec^2 x + \tan^2 x$.
a) 0 b) $\tan x + \sec^4 x$ c) $\sec^2 x (\sec^2 x + \tan^2 x)$
d) $4\sec^2 x \tan x$ c) None of these
10. Let $f(3) = 0$, $f'(3) = 6$, $g(3) = 1$ and $g'(3) = \frac{1}{3}$. Find $h'(3)$ if $h(x) = \frac{f(x)}{g(x)}$.
a) 18 b) 6 c) -6 d) -2 e) None of these
11. Find an equation for the tangent line to the graph of $f(x) = 2x^2 - 2x + 3$ at the point where $x = 1$.
a) $y = 2x - 2$ b) $y = 4x^2 - 6x + 5$ c) $y = 2x + 1$
d) $y = 4x^2 - 6x + 2$ e) None of these
12. Find all points on the graph of $f(x) = -x^2 + 3x^2 - 2$ at which there is a horizontal tangent line.
a) (0, -2) and (2, 2) b) (0, -2) c) (1, 0) and (0, -2)
d) (2, 2) c) None of these
13. Let $p(x) = f(x)g(x)$. Use the figure to find $p'(5)$.
a) 7 b) 3
c) 0 d) 24 b) 3
c) 0 d) 2

14. For how many of the functions below could the Mean Value Theorem be applied on [a, b]?

- 15. Consider the following figure where the distance x is increasing at the rate of 50 units per second. In radians per second, what is the rate of change of the angle θ when x = 10?
 - a) 1
 - b) 1.25 c) 1.5
 - d) 2
 - e) 2.5
- 16. A function y = f(x) has the properties f'(a) = f''(a) = 0. Which one of the following statements is true?
 - The graph of y = f(x) has a horizontal tangent at (a, f(a)). a)
 - b) (a, f(a)) is a point of inflection.
 - c) (a, f(a)) must be either a maximum or a minimum point.
 - d) f may be discontinuous at x = a.
 - e) None of the above is necessarily true.
- 17. Given that f(x) = |x-3|+2, which one of the following statements is false? a) f is continuous at x = 3.
 - b) f is differentiable at x = 3.

 - c) f'(5)=1

 - $\begin{array}{c} f'(0) = -1 \\ f'(0) = -1 \\ f'(0) = f'(0) = f'(0) \\ f'(0) = -1 \\$

18. If f is continuous on [-4, 4] such that f(-4)=11 and f(4)=-11, then

a)
$$f(0) = 0$$
$$\lim_{x \to 2} f(x) = 8$$
b)
$$f(x) = 8$$

- c) There is at least one c in [-4, 4] such that f(c)=8. $\lim_{x \to 3} f(x) = \lim_{x \to -3} f(x)$
- e) It is possible that f is not defined at x = 0

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2}, & \text{if } x \neq 2\\ k, & \text{if } x = 2\\ k, & \text{or what values(s) of } k \text{ is } f \text{ continuous at } x = 2?\\ a) -2, \text{ and } 2 \qquad b) 4 \qquad c) 8 \qquad d) 0 \qquad e) 6 \end{cases}$$

- 20. The following graph represents the function y = f(x). For which of the five domain values shown is f''(x) > 0 and f'(x) < 0?
 - a) a
 - b) b
 - c) c
 - d) d
 - e) e
- 21. Given L feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth side?
 a) L²/4
 b) L²/8
 c) L²/9
 d) L²/16
 e) 2L²/9

2

3

4

5

- 22. Using the graph below of f', f has a local maximum at x =
 - a) 0 only
 - b) 4 only
 - c) 0 and 4
 - d) 0 and 5
 - e) 0, 4, and 5

- 23. Using the graph above of f', f has a point of inflection at x =a) 2 only b) 3 only c) 4 only d) 2 and 3 e) 2, 3, and 4
- 24. If y is a differentiable function of x, then the slope of the curve of $xy^2 2y + 4y^3 = 6$ at the point where y = 1 is

a)
$$\frac{1}{18}$$
 b) $\frac{1}{26}$ c) $\frac{5}{18}$ d) $\frac{11}{18}$ e) 2
25. If $f(x) = \cos x \sin 3x$, then $\frac{f'(\frac{\pi}{6})}{6}$ is equal to
a) $\frac{1}{2}$ b) $\frac{-\sqrt{3}}{2}$ c) 0 d) 1 e) $\frac{-11}{2}$

26. If
$$f(3)=8$$
 and $f'(3)=-4$, then $f(3.02)$ is approximately
a) -8.08 b) 7.92 c) 7.98 d) 8.02 e) 8.08

28. If f is continuous on [4, 7], how many of the following statements must be true?

i.
$$f$$
 has a maximum value on [4, 7].
ii. f has a minimum value on [4, 7].
iii. $f(7) > f(4)$.
iv. $\lim_{x \to 6} f(x) = f(6)$.
a) 0 b) 1 c) 2 d) 3 e) 4

29. Given that f is a function, how many of the following statements are true?

- i. If f is continuous at x = c, then f'(c) exists.
- ii. If f'(c) exists, then f is continuous at x = c. $\lim_{x \to c} f(x) = f(c)$.
- iv. If f is continuous on (a, b), then f is continuous on [a, b].

30. If
$$w(x) = x^7 + 4x^5 - 7$$
 and $z(t) = t^2$, then $w(z(c)) =$
a) $(c^7 + 4c^5 - 7)^2$
b) $c^7 + 4c^5 - 7$
c) c^2
d) $c^{14} + 4c^{10} - 7c^2$
e) $c^{14} + 4c^{10} - 7$

31. Given that f is a function, how many of the following statements are true?

i. If f''(a)<0, then the graph of y = f(x) is concave upward at x = a.
ii. If f'(a) does not exists, then a is not in the domain of f.
iii. If f'(a) = 0 and f''(a)>0, then f(a) is a relative maximum value.
iv. If f'(a)=f''(a)=0, then f'''(a)=0.
a) 0 b) 1 c) 2 d) 3 e) 4

- 32. If the surface area of a sphere is increasing at the rate of 12 sq. ft. per second, how fast, in terms of ft. per second, is the radius increasing when it is 2 ft?
 - a) 1 b) $\frac{1}{\pi}$ c) π d) $\frac{2}{\pi}$ e) $\frac{3}{4\pi}$
- 33. One leg of a right triangle begins to increase at the rate of 2 inches per minute while the other leg remains at 8 inches. In terms of in./min., how fast is the hypotenuse increasing when the first leg is 6 inches?

a) 2	b) 3	c) 6/5	d) 11/5	e) 4/3
	-) -	-)		-)

34.
$$\lim_{x \to 1} \left(\frac{x^5 - 1}{x^2 - x} \right)_{=}$$

a) 5 b) 5/2 c) 0 d) 1 e) limit does not exist

35.
$$\lim_{t \to 0} \frac{\sin t}{t} =$$

a) 0 b) 1 c) $\pi/2$ d) -1 e) limit does not exist