Mathematics assessment criteria: Year 1 # Criterion A: Knowing and understanding ### Maximum: 8 At the end of year 1, students should be able to: - i. select appropriate mathematics when solving problems in both familiar and unfamiliar situations - ii. apply the selected mathematics successfully when solving problems - iii. **solve** problems correctly in a variety of contexts. | Achievement level | Level descriptor | |-------------------|--| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | i. select appropriate mathematics when solving simple problems in familiar situations ii. apply the selected mathematics successfully when solving these problems iii. generally solve these problems correctly. | | 3-4 | i. select appropriate mathematics when solving more complex problems in familiar situations ii. apply the selected mathematics successfully when solving these problems iii. generally solve these problems correctly. | | 5–6 | i. select appropriate mathematics when solving challenging problems in familiar situations ii. apply the selected mathematics successfully when solving these problems iii. generally solve these problems correctly. | | 7–8 | The student is able to: select appropriate mathematics when solving challenging problems in both familiar and unfamiliar situations apply the selected mathematics successfully when solving these problems generally solve these problems correctly. | ## Criterion B: Investigating patterns ### Maximum: 8 At the end of year 1, students should be able to: - apply mathematical problem-solving techniques to recognize patterns - ii. describe patterns as relationships or general rules consistent with correct findings - **verify** whether the pattern works for other examples. | Achievement level | Level descriptor | |-------------------|--| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | i. apply, with teacher support, mathematical problem-solving techniques to recognize simple patterns ii. state predictions consistent with simple patterns. | | 3–4 | The student is able to: i. apply mathematical problem-solving techniques to recognize patterns ii. suggest how these patterns work. | | 5–6 | The student is able to: apply mathematical problem-solving techniques to recognize patterns suggest relationships or general rules consistent with findings verify whether patterns work for another example. | | 7–8 | i. select and apply mathematical problem-solving techniques to recognize correct patterns ii. describe patterns as relationships or general rules consistent with correct findings iii. verify whether patterns work for other examples. | Note: A task that does not allow students to select a problem-solving technique is too guided and should result in students earning a maximum achievement level of 6 (for years 1 and 2). # Criterion C: Communicating #### Maximum: 8 At the end of year 1, students should be able to: - i. **use** appropriate mathematical language (notation, symbols and terminology) in both oral and written statements - ii. **use** different forms of mathematical representation to present information - iii. **communicate** coherent mathematical lines of reasoning - iv. **organize** information using a logical structure. | Achievement level | Level descriptor | |-------------------|--| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | The student is able to: i. use limited mathematical language ii. use limited forms of mathematical representation to present information iii. communicate through lines of reasoning that are difficult to understand. | | 3–4 | i. use some appropriate mathematical language ii. use different forms of mathematical representation to present information adequately iii. communicate through lines of reasoning that are able to be understood, although these are not always coherent iv. adequately organize information using a logical structure. | | 5–6 | The student is able to: i. usually use appropriate mathematical language ii. usually use different forms of mathematical representation to present information correctly iii. communicate through lines of reasoning that are usually coherent iv. present work that is usually organized using a logical structure. | | 7–8 | The student is able to: consistently use appropriate mathematical language consistently use different forms of mathematical representation to present information correctly communicate clearly through coherent lines of reasoning present work that is consistently organized using a logical structure. | ## Criterion D: Applying mathematics in real-life contexts #### Maximum: 8 At the end of year 1, students should be able to: - identify relevant elements of authentic real-life situations - ii. select appropriate mathematical strategies when solving authentic real-life situations - iii. apply the selected mathematical strategies successfully to reach a solution - iv. explain the degree of accuracy of a solution - **describe** whether a solution makes sense in the context of the authentic real-life situation. ٧. | Achievement level | Level descriptor | |-------------------|---| | 0 | The student does not reach a standard described by any of the descriptors below. | | 1–2 | i. identify some of the elements of the authentic real-life situation ii. apply mathematical strategies to find a solution to the authentic real-life situation, with limited success. | | 3–4 | i. identify the relevant elements of the authentic real-life situation ii. apply mathematical strategies to reach a solution to the authentic real-life situation iii. state, but not always correctly, whether the solution makes sense in the context of the authentic real-life situation. | | 5–6 | i. identify the relevant elements of the authentic real-life situation ii. select adequate mathematical strategies to model the authentic real-life situation iii. apply the selected mathematical strategies to reach a valid solution to the authentic real-life situation iv. describe the degree of accuracy of the solution v. state correctly whether the solution makes sense in the context of the authentic real-life situation. | | 7–8 | i. identify the relevant elements of the authentic real-life situation ii. select adequate mathematical strategies to model the authentic real-life situation iii. apply the selected mathematical strategies to reach a correct solution to the authentic real-life situation iv. explain the degree of accuracy of the solution v. describe correctly whether the solution makes sense in the context of the authentic real-life situation. |