Mathematics:

Brunswick School Department Geometry CP Unit 4: Triangle Relationships

Essential Understandings	 Congruent triangles are used to derive many geometric relationships.
Essential Questions	 What are congruent triangles? How does one show that triangles are congruent? How does one use congruent triangles to derive other geometric relationships?
Essential Knowledge	 In congruent triangles, each pair of corresponding parts is congruent. Triangles can be proven congruent using SSS, SAS, ASA, AAS and HL postulates and theorem. Base angles of an isosceles triangle are congruent, and conversely, if two angles a triangle are congruent, then the triangle is isosceles. A triangle is equiangular if and only if it is equilateral. In an isosceles triangle, the median to the base, the altitude to the base and the bisector of the vertex angle are the same segment.
Vocabulary	 Terms: corresponding parts, congruent triangles, SSS, SAS, ASA, AAS, HL, isosceles triangle, base angles, vertex angles, legs, base, right triangle, hypotenuse, legs, altitude, median, perpendicular bisector of a segment
Essential Skills	 Determine if triangles are congruent using SSS, SAS, ASA, AAS, and HL. Use corresponding parts of congruent triangles to prove that other parts of triangles are congruent. Identify congruent sides and angles in an isosceles triangle. Given the measure of one angle in an isosceles triangle, find the measures of the other two angles. Identify the altitudes, medians, perpendicular bisectors, and angle bisectors in a triangle.

Mathematics:

Brunswick School Department Geometry CP Unit 4: Triangle Relationships

	<u>Mathematics</u>
	C. Geometry
	Geometric Figures
	C1.Students justify statements about polygons and solve problems.
	a. Use the properties of triangles to prove theorems about
	figures and relationships among figures.
	b. Solve for missing dimensions based on congruence and
	similarity.
	c. Use the Pythagorean Theorem in situations where right
	triangles are created by adding segments to figures.
	d. Use the distance formula.
	C2. Students justify statements about circles and solve problems.
	 a. Use the concepts of central and inscribed angles to solve problems and justify statements.
Related	b. Use relationships among arc length and circumference, and
Maine Learning	areas of circles and sectors to solve problems and justify
Results	statements.
	C3.Students understand and use basic ideas of trigonometry.
	a. Identify and find the value of trigonometric ratios for angles
	in right triangles.
	b. Use trigonometry to solve for missing lengths in right
	triangles.
	c. Use inverse trigonometric functions to find missing angles in
	right triangles.
	Geometric Measurement
	C4.Students find the surface area of three-dimensional figures.
	a. Find the volume and surface area of three-dimensional
	figures including cones and spheres.
	b. Determine the effect of changes in linear dimensions on the
	volume and surface area of similar and other three-
	dimensional figures.
Sample	Cut out four pairs of congruent triangles and place them on the
Lessons	overhead. Ask a volunteer to come up and place the "ones that are
And	alike" together. Discuss why these are alike (i.e., angle
Activities	measurement, side length, etc.)
Sample	In class work on the overhead and board to model work
Classroom	 Group work with other students which is evaluated by peers
Assessment	Quizzes
Methods	■ Tests
INICHIOUS	■ Take-home worksheets and tests
	Publications:
Sample	
-	o Geometry - McDougal Littell
Resources	 Geometry: Concepts and Skills - McDougal Littell