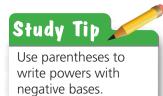

## 10.1 Lesson




#### Key Vocabulary power, p. 412 base, p. 412 exponent, p. 412

A **power** is a product of repeated factors. The **base** of a power is the common factor. The **exponent** of a power indicates the number of times the base is used as a factor.



## EXAMPLE

#### 1 Writing Expressions Using Exponents



Write each product using exponents.

**a.**  $(-7) \cdot (-7) \cdot (-7)$ 

Because -7 is used as a factor 3 times, its exponent is 3.

So, 
$$(-7) \cdot (-7) \cdot (-7) = (-7)^3$$
.

**b.**  $\pi \cdot \pi \cdot r \cdot r \cdot r$ 

Because  $\pi$  is used as a factor 2 times, its exponent is 2. Because *r* is used as a factor 3 times, its exponent is 3.

So,  $\pi \cdot \pi \cdot r \cdot r \cdot r = \pi^2 r^3$ .

#### On Your Own

Now You're Ready Exercises 3–10

# Write the product using exponents.

**1.**  $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}$ 

**2.**  $0.3 \cdot 0.3 \cdot 0.3 \cdot 0.3 \cdot x \cdot x$ 

#### 2 **Evaluating Expressions EXAMPLE**

#### **Evaluate each expression.**

**a.** 
$$(-2)^4$$
  
 $(-2)^4 = (-2) \cdot (-2) \cdot (-2) \cdot (-2)$   
The base is -2. = 16

 $-2^4 = -(2 \cdot 2 \cdot 2 \cdot 2) = -16$ 

Write as repeated multiplication. Simplify.

Write as repeated multiplication. Simplify.

The base is 2.

**b.**  $-2^4$ 

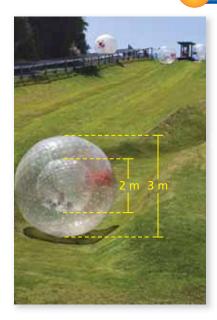
EXAMPLE

3

#### Using Order of Operations

#### Evaluate each expression.

| a. | $3 + 2 \cdot 3^4 = 3 + 2 \cdot 81$                  | Evaluate the power.             |
|----|-----------------------------------------------------|---------------------------------|
|    | = 3 + 162                                           | Multiply.                       |
|    | = 165                                               | Add.                            |
|    |                                                     |                                 |
| b. | $3^3 - 8^2 \div 2 = 27 - 64 \div 2$                 | Evaluate the powers.            |
| b. | $3^{3} - 8^{2} \div 2 = 27 - 64 \div 2$ $= 27 - 32$ | Evaluate the powers.<br>Divide. |
| b. |                                                     |                                 |


#### ) On Your Own

Now You're Ready Exercises 11–16 and 21–26 Evaluate the expression. 3.  $-5^4$ 4.  $\left(-\frac{1}{6}\right)^3$ 5.  $|-3^3 \div 27|$ 6.  $9 - 2^5 \cdot 0.5$ 

#### EXAMPLE

Д

#### **Real-Life Application**



In sphering, a person is secured inside a small, hollow sphere that is surrounded by a larger sphere. The space between the spheres is inflated with air. What is the volume of the inflated space?

You can find the radius of each sphere by dividing each diameter given in the diagram by 2.

# Outer SphereInner Sphere $V = \frac{4}{3} \pi r^3$ Write formula. $V = \frac{4}{3} \pi r^3$ $= \frac{4}{3} \pi \left(\frac{3}{2}\right)^3$ Substitute. $= \frac{4}{3} \pi (1)^3$ $= \frac{4}{3} \pi \left(\frac{27}{8}\right)$ Evaluate the power. $= \frac{4}{3} \pi (1)$ $= \frac{9}{2} \pi$ Multiply. $= \frac{4}{3} \pi$

So, the volume of the inflated space is  $\frac{9}{2}\pi - \frac{4}{3}\pi = \frac{19}{6}\pi$ , or about 10 cubic meters.

#### On Your Own

**7. WHAT IF?** The diameter of the inner sphere is 1.8 meters. What is the volume of the inflated space?



## How Does A Bee Part His Hair?

Write the letter of each answer in the box containing the exercise number.

#### Evaluate the expression.

| 1.  | 3 <sup>3</sup>                | 2.    | -4 <sup>5</sup>                                                                         |
|-----|-------------------------------|-------|-----------------------------------------------------------------------------------------|
| 3.  | $(-2)^{5}$                    | 4.    | $(-7)^4$                                                                                |
| 5.  | $\left(\frac{1}{5}\right)^3$  | 6.    | $\left(-\frac{1}{3}\right)^5$                                                           |
| 7.  | $-\left(\frac{1}{4}\right)^3$ | 8.    | $\left -\left(\frac{1}{6}\right)^3\right $                                              |
| 9.  | $7^3 - 5^4$                   | 10.   | $4 \bullet 3^4 + 6$                                                                     |
| 11. | $2(11^3 - 10^3)$              | 12.   | $\frac{1}{8}(4^6 - 4^3)$                                                                |
| 13. | $ 6^3 - 7^3 $                 | 14.   | $ 9^2 + (-9)^3 $                                                                        |
| 15. | • 1                           | •     | n the mail. The box is a cube<br>ides. How many cubic inches                            |
| 16. | the email to 8 friends. A     | And t | ds. They each forwarded<br>hose friends each forwarded<br>hain of emails is represented |

by the expression  $8 + 8^2 + 8^3$ . How many people were

| An | swers            |
|----|------------------|
| S. | $-\frac{1}{243}$ |
| Т. | -282             |
| С. | 584              |
| Ι. | -1024            |
| E. | 662              |
| 0. | $\frac{1}{125}$  |
| Ι. | 27               |
| О. | 504              |
| н. | 330              |
| В. | 2744             |
| w. | $\frac{1}{216}$  |
| н. | 2401             |
| н. | 127              |
| Υ. | 648              |
| М. | $-\frac{1}{64}$  |
| N. | -32              |

| ſ | 8 | 2 | 9 | 4 | 10 | 1 | 6 | 13 | 5 | 3 | 11 | 14 | 16 | 12 | 7 | 15 |
|---|---|---|---|---|----|---|---|----|---|---|----|----|----|----|---|----|
|   |   |   |   |   |    |   |   |    |   |   |    |    |    |    |   |    |

sent your email?

## 10.2 Lesson





#### **Product of Powers Property**

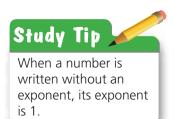
Words To multiply powers with the same base, add their exponents.

Numbers  $4^2 \cdot 4^3 = 4^{2+3} = 4^5$  Algebra  $a^m \cdot a^n = a^{m+n}$ 

#### **Power of a Power Property**

**Words** To find a power of a power, multiply the exponents.

Numbers  $(4^6)^3 = 4^{6 \cdot 3} = 4^{18}$  Algebra  $(a^m)^n = a^{mn}$ 


#### **Power of a Product Property**

**Words** To find a power of a product, find the power of each factor and multiply.

**Numbers**  $(3 \cdot 2)^5 = 3^5 \cdot 2^5$ 

Algebra  $(ab)^m = a^m b^m$ 

#### **EXAMPLE Multiplying Powers with the Same Base**



| b. | $-5 \cdot (-5)^6 = (-5)^1 \cdot (-5)^6$ |
|----|-----------------------------------------|
|    | $= (-5)^{1+6}$                          |
|    | $=(-5)^{7}$                             |

 $= 2^9$ 

**c.** 
$$x^3 \cdot x^7 = x^{3+7}$$
  
=  $x^{10}$ 

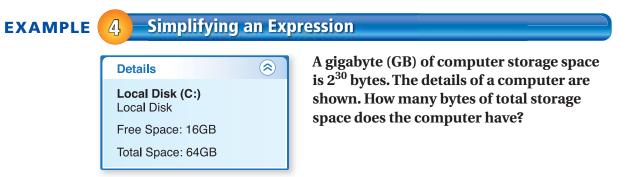
**a.**  $2^4 \cdot 2^5 = 2^{4+5}$ 

Product of Powers Property Simplify.

Rewrite -5 as  $(-5)^1$ .

Product of Powers Property

Simplify.


Product of Powers Property Simplify.

## EXAMPLE 2 Finding a Power of a Power

**a.**  $(3^4)^3 = 3^{4 \cdot 3}$ Power of a Power Property $= 3^{12}$ Simplify.**b.**  $(w^5)^4 = w^{5 \cdot 4}$ Power of a Power Property $= w^{20}$ Simplify.

| EXAMPLE 3                   | Finding a Power o                                            | of a P | roduct                                                          |                            |
|-----------------------------|--------------------------------------------------------------|--------|-----------------------------------------------------------------|----------------------------|
|                             | <b>a.</b> $(2x)^3 = 2^3 \cdot x^3$<br>= $8x^3$               |        | Power of a Product<br>Simplify.                                 | Property                   |
|                             | <b>b.</b> $(3xy)^2 = 3^2 \cdot x^2 \cdot y^2$<br>= $9x^2y^2$ |        | Power of a Product<br>Simplify.                                 | Property                   |
| Now You're Ready            | <b>On Your Own</b><br>Simplify the expression                |        |                                                                 |                            |
| Exercises 3–14<br>and 17–22 | <b>1.</b> $6^2 \cdot 6^4$                                    | 2.     | $\left(-\frac{1}{2}\right)^3 \cdot \left(-\frac{1}{2}\right)^6$ | <b>3.</b> $z \cdot z^{12}$ |
|                             | <b>4.</b> $(4^4)^3$                                          | 5. (   | $(y^2)^4$                                                       | <b>6.</b> $((-4)^3)^2$     |

**7.**  $(5y)^4$  **8.**  $(ab)^5$  **9.**  $(0.5mn)^2$ 



 $2^{36}$ 

**(B**)

The computer has 64 gigabytes of total storage space. Notice that you can write 64 as a power,  $2^6$ . Use a model to solve the problem.

 $\bigcirc 2^{180}$ 

**(D)**  $128^{30}$ 

| Total number | = | Number of b          | -      | Number of             |
|--------------|---|----------------------|--------|-----------------------|
| of bytes     |   | in a gigabyte        |        | gigabytes             |
|              | = | $2^{30} \cdot 2^{6}$ | Substi | tute.                 |
|              | = | $2^{30+6}$           | Produ  | ct of Powers Property |
|              | = | 2 <sup>36</sup>      | Simpli | fy.                   |

The computer has 2<sup>36</sup> bytes of total storage space. The correct answer is **B**.

#### 📄 On Your Own

(A)  $2^{34}$ 

**10.** How many bytes of free storage space does the computer have?



## Did You Hear About...

\_

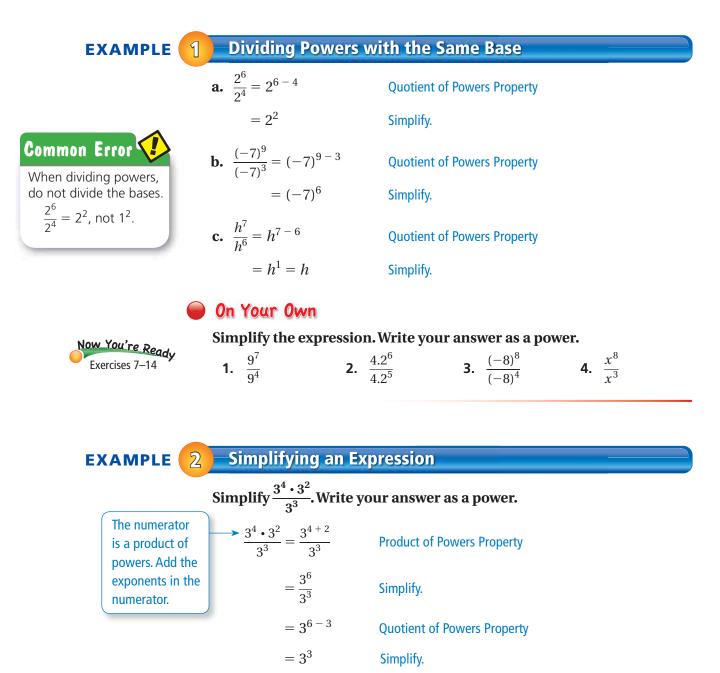
| A | В | С | D | E | F |
|---|---|---|---|---|---|
| G | н | I | J | К | L |
| м | Ν |   |   |   |   |

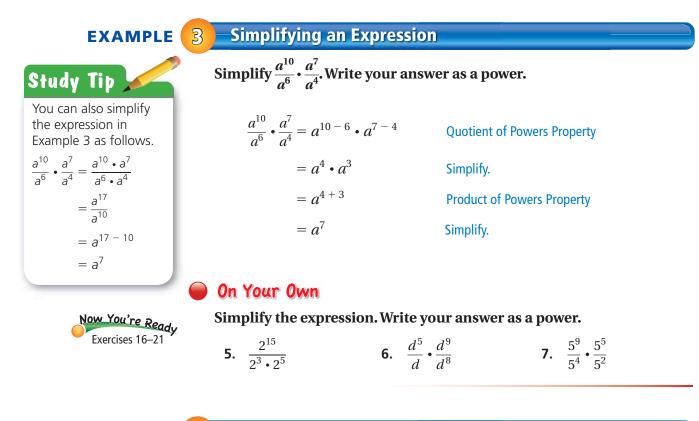
Complete each exercise. Find the answer in the answer column. Write the word under the answer in the box containing the exercise letter.

| −4c <sup>5</sup><br>NOTES           | Simplify the expression<br>A. 4 ● 4 <sup>5</sup>                | on. Write your answer as a power.<br>B. $6^3 \bullet 6^7$               | 2.25 <i>r</i> <sup>2</sup><br>ONE      |
|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|
| 2058<br>KEYS                        | <b>C.</b> $(-3)^8 \bullet (-3)^3$                               | <b>D.</b> $\left(\frac{4}{5}\right)^2 \cdot \left(\frac{4}{5}\right)^6$ | (-3) <sup>11</sup><br>TEACHER          |
| −1024c <sup>5</sup><br>BECAUSE      | <b>E.</b> $(7^3)^5$                                             | <b>F.</b> $((-8)^{10})^3$                                               | 1.5r <sup>2</sup><br>CLASS             |
| 3 <sup>24</sup><br>HOW              | Simplify the expression $G. (8a)^3$                             |                                                                         | 7 <sup>15</sup><br>CALLED              |
| 6 <sup>10</sup><br>PIANO            | <b>G.</b> $(8a)$<br><b>I.</b> $(1.5r)^2$                        | H. $(-4c)^5$<br>J. $(\frac{2}{3}m)^4$                                   | 6561<br>GOT                            |
| 8a <sup>3</sup><br>DOOR             | <b>K.</b> $3^2 \bullet 3^4 - 4^4$                               | <b>J.</b> $\left(\frac{-\pi}{3}\right)$<br><b>L.</b> 7 • $(7^3 - 7^2)$  | 512 <i>a<sup>3</sup></i><br>LOCKSMITH  |
| $\left(\frac{4}{5}\right)^8$<br>WHO | <b>M.</b> $\left(\frac{1}{3}\right)^4 \cdot \left(9^3\right)^2$ | <b>L</b> . <i>(</i> , <i>(</i> , <i>(</i> , <i>)</i> )                  | 2/3 m⁴<br>3 SHE                        |
| 16<br>81m⁴<br>OF                    | budget of the orig                                              | remake of a movie is 100 times the ginal movie. The original movie's    | $\left(\frac{4}{5}\right)^{12}$<br>ARE |
| 6 • 10 <sup>7</sup><br>STUCK        | <u> </u>                                                        | <sup>5</sup> dollars. What is the budget of the your answer as a power. | 4 <sup>6</sup><br>THE                  |
| (-8) <sup>30</sup><br>The           |                                                                 |                                                                         | 473<br>HER                             |

**320** Big Ideas Math Blue Resources by Chapter

## 10.3 Lesson




#### **Quotient of Powers Property**

Words To divide powers with the same base, subtract their exponents.

Numbers  $\frac{4^5}{a^2} = 4^{5-2} = 4^3$  Algebra  $\frac{a^m}{a^n} = a^{m-n}$ , where  $a \neq 0$ 





**EXAMPLE** 4 Real-Life Application

The projected population of Tennessee in 2030 is about  $5 \cdot 5.9^8$ . Predict the average number of people per square mile in 2030.

Use a model to solve the problem.

| People per<br>square mile | = Population in Land area      | Land area:                  |
|---------------------------|--------------------------------|-----------------------------|
|                           | $=rac{5\cdot 5.9^8}{5.9^6}$   | Substitute.                 |
|                           | $=5 \cdot \frac{5.9^8}{5.9^6}$ | Rewrite.                    |
|                           | $= 5 \cdot 5.9^2$              | Quotient of Powers Property |
|                           | = 174.05                       | Evaluate.                   |

So, there will be about 174 people per square mile in Tennessee in 2030.

#### On Your Own



 The projected population of Alabama in 2030 is about 2.25 • 2<sup>21</sup>. The land area of Alabama is about 2<sup>17</sup> square kilometers. Predict the average number of people per square kilometer in 2030.



## What Do You Give A Dog That Loves Computers?

Write the letter of each answer in the box containing the exercise number.

Simplify the expression. Write the answer as a power.

|     | 012                                                        |      | 224                                              | Ans | swe                    |
|-----|------------------------------------------------------------|------|--------------------------------------------------|-----|------------------------|
| 1.  | $\frac{8^{12}}{8^6}$                                       | 2.   | $\frac{3^{24}}{3^{15}}$                          | Y.  | 2.8                    |
| 2   | $(-7)^{14}$                                                |      | 2.87                                             | D.  | <i>x</i> <sup>12</sup> |
| 3.  | $\frac{(-7)^{14}}{(-7)^4}$                                 | 4.   | $\frac{2.8^7}{2.8^4}$                            | I.  | $\pi^7$                |
| 5.  | $\frac{\pi^{12}}{\pi^5}$                                   | 6.   | $\frac{x^8}{x^3}$                                | D.  | (-7                    |
|     |                                                            |      |                                                  | E.  | $x^5$                  |
| 7.  | $\frac{3^4 \bullet 3^5}{3^2 \bullet 3^2}$                  | 8.   | $\frac{8^{15}}{8^7 \bullet 8}$                   | E.  | 3 <sup>9</sup>         |
| •   | $\pi^5 ullet \pi^9$                                        |      | $x^{14} \bullet x^5$                             | т.  | 40                     |
| 9.  | $\frac{\pi^5 \bullet \pi^9}{\pi^3 \bullet \pi^3}$          | 10.  | $\frac{x^{14} \bullet x^5}{x^7}$                 | G.  | 87                     |
| 11. | $\frac{(-7)^3 \bullet (-7)^9}{(-7)^2 \bullet (-7)}$        | 12.  | $\frac{2.8^{15} \cdot 2.8^8}{2.8^9 \cdot 2.8^6}$ | 0.  | (-7                    |
|     | $(-7)^2 \bullet (-7)$                                      |      | $2.8^{\circ} \bullet 2.8^{\circ}$                | S.  | $\pi^8$                |
| 13. | There are about $4 \cdot 10^5$ .<br>The number of known sp |      | 1                                                | S.  | 86                     |
|     | about 10 <sup>4</sup> . How many tir                       | nes  |                                                  | К.  | 640                    |
|     | are there than caddis flies                                | S !  |                                                  | Т.  | 3 <sup>5</sup>         |
| 14. | The area of the Pacific O                                  | ceai | n is approximately                               |     |                        |

 $6.4 \cdot 10^7$  square miles. The area of the Gulf of Mexico is approximately 10<sup>5</sup> square miles. How many times greater is the area of the Pacific Ocean than the area of the Gulf of Mexico?

| An | swers                 |
|----|-----------------------|
| Y. | 2.8 <sup>3</sup>      |
| D. | $x^{12}$              |
| I. | $\pi^7$               |
| D. | $(-7)^{9}$            |
| E. | <i>x</i> <sup>5</sup> |
| E. | 3 <sup>9</sup>        |
| т. | 40                    |
| G. | 87                    |
| О. | $(-7)^{10}$           |
| S. | $\pi^8$               |
| S. | 86                    |
| К. | 640                   |
| Т. | 35                    |
| G. | 2.8 <sup>8</sup>      |

| 11 | 3 | 8 | 12 | 4 | 10 | 5 | 9 | 14 | 6 | 7 | 13 | 2 | 1 |
|----|---|---|----|---|----|---|---|----|---|---|----|---|---|
|    |   |   |    |   |    |   |   |    |   |   |    |   |   |







#### Zero Exponents

**Words** For any nonzero number a,  $a^0 = 1$ . The power  $0^0$  is *undefined*. **Numbers**  $4^0 = 1$  **Algebra**  $a^0 = 1$ , where  $a \neq 0$ 

#### **Negative Exponents**

**Words** For any integer *n* and any nonzero number *a*,  $a^{-n}$  is the reciprocal of  $a^n$ .

**Numbers**  $4^{-2} = \frac{1}{4^2}$ 

Algebra 
$$a^{-n} = \frac{1}{a^n}$$
, where  $a \neq 0$ 

| EXAMPLE 1 | Evaluating Ex                             | pressions                  |                             |
|-----------|-------------------------------------------|----------------------------|-----------------------------|
|           | <b>a.</b> $3^{-4} = \frac{1}{3^4}$        | Definition of negative exp | oonent                      |
|           | $=\frac{1}{81}$                           | Evaluate power.            |                             |
|           | <b>b.</b> $(-8.5)^{-4} \cdot (-8.5)^{-4}$ | $(-8.5)^4 = (-8.5)^{-4+4}$ | Product of Powers Property  |
|           |                                           | $= (-8.5)^0$               | Simplify.                   |
|           |                                           | = 1                        | Definition of zero exponent |
|           | <b>c.</b> $\frac{2^6}{2^8} = 2^{6-8}$     | Quotient of Powers Prop    | erty                        |
|           | $=2^{-2}$                                 | Simplify.                  |                             |
|           | $=\frac{1}{2^2}$                          | Definition of negative exp | ponent                      |
|           | $=\frac{1}{4}$                            | Evaluate power.            |                             |
|           |                                           |                            |                             |

## On Your Own

Now You're Ready Exercises 5–16 Evaluate the expression.

1. 
$$4^{-2}$$
2.  $(-2)^{-5}$ 3.  $6^{-8} \cdot 6^{8}$ 4.  $\frac{(-3)^{5}}{(-3)^{6}}$ 5.  $\frac{1}{5^{7}} \cdot \frac{1}{5^{-4}}$ 6.  $\frac{4^{5} \cdot 4^{-3}}{4^{2}}$ 

**EXAMPLE** 

2

#### **Simplifying Expressions**

| a. | $-5x^0 = -5(1)$                   | Definition of zero exponent     |
|----|-----------------------------------|---------------------------------|
|    | = -5                              | Multiply.                       |
| b. | $\frac{9y^{-3}}{y^5} = 9y^{-3-5}$ | Quotient of Powers Property     |
|    | $=9y^{-8}$                        | Simplify.                       |
|    | $=\frac{9}{y^8}$                  | Definition of negative exponent |

#### On Your Own

7.  $8x^{-2}$ 

Now You're Ready Exercises 20-27

Simplify. Write the expression using only positive exponents.

| 8. $b^0 \cdot b^{-10}$ |  |
|------------------------|--|
|                        |  |

# 9. $\frac{z^6}{15z^9}$

#### **Real-Life Application EXAMPLE** 3

A drop of water leaks from a faucet every second. How many liters of water leak from the faucet in 1 hour?

Convert 1 hour to seconds.

$$1 \text{ h} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ sec}}{1 \text{ min}} = 3600 \text{ sec}$$

Water leaks from the faucet at a rate of  $50^{-2}$  liter per second. Multiply the time by the rate.

| $3600 \sec \cdot 50^{-2} \frac{L}{\sec} = 3600 \cdot \frac{1}{50^2}$ | Definition of negative exponent |
|----------------------------------------------------------------------|---------------------------------|
| $= 3600 \cdot \frac{1}{2500}$                                        | Evaluate power.                 |
| $=\frac{3600}{2500}$                                                 | Multiply.                       |
| $=1\frac{11}{25}=1.44$ L                                             | Simplify.                       |

So, 1.44 liters of water leak from the faucet in 1 hour. 

#### On Your Own

**10.** WHAT IF? The faucet leaks water at a rate of  $5^{-5}$  liter per second. How many liters of water leak from the faucet in 1 hour?



Drop of water: 50<sup>-2</sup> liter





## What Happened When The Tree Saw The Ghost?

Circle the letter of each correct answer in the boxes below. The circled letters will spell out the answer to the riddle.

#### Evaluate the expression.

 1.  $7^{-5} \bullet 7^3$  2.  $5^2 \bullet 5^{-6}$  

 3.  $\frac{2^7}{2^{10}}$  4.  $\frac{6^0}{6^3}$  

 5.  $\frac{(-8)^3}{(-8)^5}$  6.  $\frac{(2.2)^7}{(2.2)^9}$  

 7.  $\frac{4^5}{4^4} \bullet \frac{4^8}{4^{13}}$  8.  $\frac{(-9)^3}{(-9)^7 \bullet (-9)^{-2}}$ 

#### Simplify the expression using only positive exponents.

**9.**  $3^{-2}a^4$  **10.**  $12^{-1}t^{-3}$  **11.**  $\frac{b^4}{5^{-2}b^8}$ **12.**  $\frac{14r^8}{2r^{15}}$ 

**13.** 
$$\frac{x^5 \cdot y^6}{2^{-2} \cdot x^0 \cdot y^9}$$
**14.** 
$$\frac{6 \cdot f^{-4} \cdot g^2}{2 \cdot f^{-4} \cdot g^{-1}}$$

| н                | Α                  | Ι                 | S              | Т              | R                | М              | Е      | w                 | L        | Α                  | N              | S               | U                  | v                | D     | Y               |
|------------------|--------------------|-------------------|----------------|----------------|------------------|----------------|--------|-------------------|----------|--------------------|----------------|-----------------|--------------------|------------------|-------|-----------------|
| 8                | $\frac{4x^4}{y^2}$ | $\frac{1}{12t^3}$ | $\frac{1}{16}$ | $\frac{1}{49}$ | $\frac{1}{9a^4}$ | $\frac{1}{36}$ | $7r^7$ | $\frac{1}{4.84}$  | $3 fg^3$ | $\frac{1}{216}$    | 81             | $\frac{1}{625}$ | $\frac{x^5}{4y^3}$ | $\frac{25}{b^2}$ | 49    | $-\frac{1}{64}$ |
| I                | Р                  | Т                 | Е              | G              | т                | R              | 0      | I                 | S        | F                  | Q              | I               | к                  | Е                | В     | D               |
| $\frac{12}{t^3}$ | $3g^3$             | _1                | 1              | 4.84           | $\frac{25}{b^4}$ | $\frac{1}{81}$ | -8     | $\underline{a^4}$ | 64       | $\frac{4x^5}{v^3}$ | $\frac{3}{fg}$ | 1               | -16                | 1                | $t^3$ | $\frac{7}{r^7}$ |

## 7.1 Lesson



Key Vocabulary () square root, *p. 290* perfect square, *p. 290* radical sign, *p. 290* radicand, *p. 290* 

#### EXAMPLE

#### Finding Square Roots of a Perfect Square

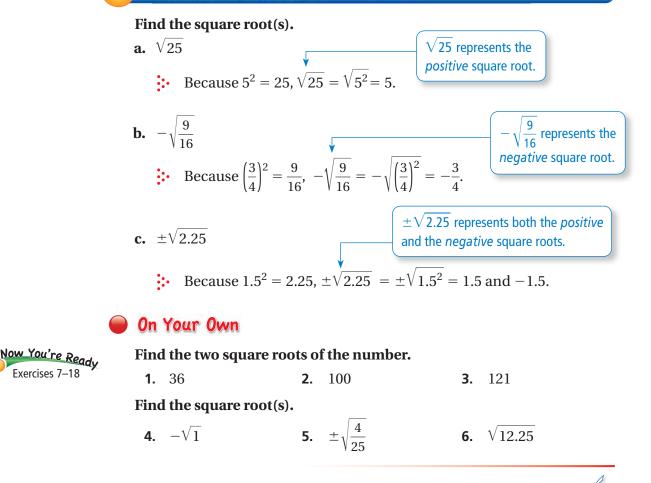
Find the two square roots of 49.

Study Tip Zero has one square root, which is 0.  $7 \cdot 7 = 49$  and  $(-7) \cdot (-7) = 49$ 

So, the square roots of 49 are 7 and -7.

The symbol  $\sqrt{\phantom{a}}$  is called a **radical sign**. It is used to represent a square root. The number under the radical sign is called the **radicand**.

A **square root** of a number is a number that, when multiplied by itself,


equals the given number. Every positive number has a positive and a

negative square root. A **perfect square** is a number with integers as its

| Positive Square Root, $\sqrt{}$ | Negative Square Root, $-$ | Both Square Roots, $\pm $ |
|---------------------------------|---------------------------|---------------------------|
| $\sqrt{16} = 4$                 | $-\sqrt{16} = -4$         | $\pm\sqrt{16} = \pm 4$    |

#### **EXAMPLE** 2 Finding Square Roots

square roots.



## 7.2 Lesson



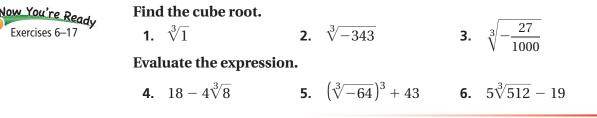
#### Key Vocabulary ()) cube root, p. 296 perfect cube, p. 296

A **cube root** of a number is a number that, when multiplied by itself, and then multiplied by itself again, equals the given number. A **perfect cube** is a number that can be written as the cube of an integer. The symbol  $\sqrt[3]{}$  is used to represent a cube root.

#### EXAMPLE 1 Finding Cube Roots

#### Find each cube root.

**a.** 
$$\sqrt[3]{8}$$
  
 $\therefore$  Because  $2^3 = 8$ ,  $\sqrt[3]{8} = \sqrt[3]{2^3} = 2$ .  
**b.**  $\sqrt[3]{-27}$   
 $\therefore$  Because  $(-3)^3 = -27$ ,  $\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$ .  
**c.**  $\sqrt[3]{\frac{1}{64}}$   
 $\therefore$  Because  $\left(\frac{1}{4}\right)^3 = \frac{1}{64}$ ,  $\sqrt[3]{\frac{1}{64}} = \sqrt[3]{\left(\frac{1}{4}\right)^3} = \frac{1}{4}$ .


Cubing a number and finding a cube root are inverse operations. You can use this relationship to evaluate expressions and solve equations involving cubes.

## **EXAMPLE** 2 Evaluating Expressions Involving Cube Roots

#### **Evaluate each expression.**

| <b>a.</b> $2\sqrt[3]{-216} - 3 = 2(-6) - 3$   | Evaluate the cube root.                      |
|-----------------------------------------------|----------------------------------------------|
| = -12 - 3                                     | Multiply.                                    |
| = -15                                         | Subtract.                                    |
| <b>b.</b> $(\sqrt[3]{125})^3 + 21 = 125 + 21$ | Evaluate the power using inverse operations. |
| = 146                                         | Add.                                         |

#### 🔵 On Your Own

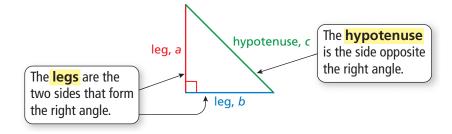


|                             | Using Square and Cube Roots  | Name:                                                                                                                                                                                                |
|-----------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solve each problem.         |                              | Answers                                                                                                                                                                                              |
| <b>1</b> ) $\sqrt{49}$      | <b>2</b> ) $\sqrt[3]{729}$   |                                                                                                                                                                                                      |
|                             |                              | 1                                                                                                                                                                                                    |
|                             |                              | 2.                                                                                                                                                                                                   |
| <b>3</b> ) $\sqrt{100}$     | <b>4</b> ) $\sqrt[3]{1,000}$ |                                                                                                                                                                                                      |
|                             |                              | 3                                                                                                                                                                                                    |
|                             |                              | 4.                                                                                                                                                                                                   |
| <b>5</b> ) $\sqrt{25}$      | <b>6</b> ) $\sqrt[3]{512}$   |                                                                                                                                                                                                      |
|                             |                              | 5                                                                                                                                                                                                    |
|                             |                              | 6.                                                                                                                                                                                                   |
| <b>7</b> ) $\sqrt{64}$      | <b>8</b> ) $\sqrt[3]{8}$     |                                                                                                                                                                                                      |
|                             |                              | 7                                                                                                                                                                                                    |
|                             |                              | 8.                                                                                                                                                                                                   |
| <b>9</b> ) $\sqrt{4}$       | <b>10</b> ) $\sqrt{9}$       |                                                                                                                                                                                                      |
|                             |                              | 9                                                                                                                                                                                                    |
|                             |                              | 10.                                                                                                                                                                                                  |
| <b>11</b> ) $\sqrt[3]{216}$ | <b>12</b> ) $\sqrt{1}$       |                                                                                                                                                                                                      |
|                             |                              | 11                                                                                                                                                                                                   |
|                             |                              | 12.                                                                                                                                                                                                  |
| <b>13</b> ) $\sqrt[3]{1}$   | <b>14</b> ) $\sqrt{36}$      |                                                                                                                                                                                                      |
|                             |                              | 13                                                                                                                                                                                                   |
|                             | _                            | 14.                                                                                                                                                                                                  |
| <b>15</b> ) $\sqrt{16}$     | <b>16</b> ) $\sqrt[3]{125}$  |                                                                                                                                                                                                      |
|                             |                              | 15                                                                                                                                                                                                   |
|                             | 2                            | 16                                                                                                                                                                                                   |
| <b>17</b> ) $\sqrt{81}$     | <b>18</b> ) $\sqrt[3]{343}$  |                                                                                                                                                                                                      |
|                             |                              | 17                                                                                                                                                                                                   |
| 10) 3/                      | 3/                           | 18                                                                                                                                                                                                   |
| <b>19</b> ) $\sqrt[3]{64}$  | <b>20</b> ) $\sqrt[3]{27}$   | 19.                                                                                                                                                                                                  |
|                             |                              | 19                                                                                                                                                                                                   |
|                             |                              | 20.                                                                                                                                                                                                  |
| Math                        | www.CommonCoreSheets.com 1   | 1-10       95       90       85       80       75       70       65       60       55       50         11-20       45       40       35       30       25       20       15       10       5       0 |

# 7.3 Lesson



Key Vocabulary ◀)) theorem, p. 300 legs, p. 302 hypotenuse, p. 302 Pythagorean Theorem, p. 302



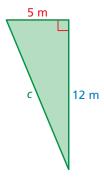

In a right triangle, the legs are the shorter sides and the hypotenuse is always the longest side.



#### Sides of a Right Triangle

The sides of a right triangle have special names.

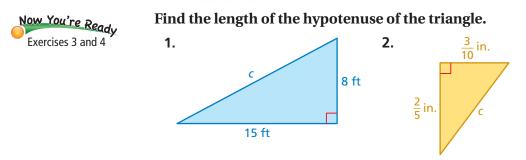



#### **The Pythagorean Theorem**

**Words** In any right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

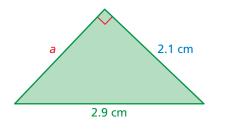
Algebra  $a^2 + b^2 = c^2$ 

#### **EXAMPLE 1** Finding the Length of a Hypotenuse


#### Find the length of the hypotenuse of the triangle.



 $a^2 + b^2 = c^2$ Write the Pythagorean Theorem. $5^2 + 12^2 = c^2$ Substitute 5 for a and 12 for b. $25 + 144 = c^2$ Evaluate powers. $169 = c^2$ Add. $\sqrt{169} = \sqrt{c^2}$ Take positive square root of each side.13 = cSimplify.


The length of the hypotenuse is 13 meters.

#### 👂 On Your Own



**EXAMPLE 2** Finding the Length of a Leg

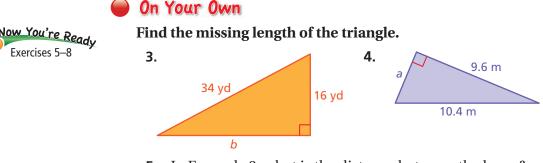
#### Find the missing length of the triangle.



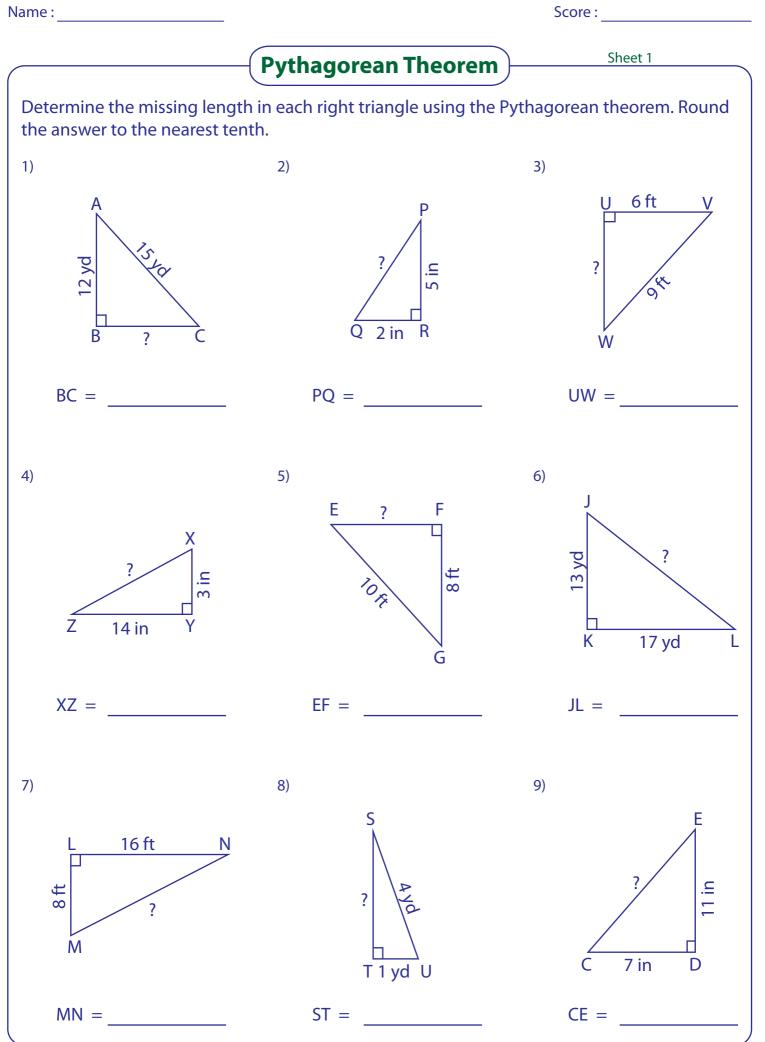
 $a^2 + b^2 = c^2$ Write the Pythagorean Theorem. $a^2 + 2.1^2 = 2.9^2$ Substitute 2.1 for b and 2.9 for c. $a^2 + 4.41 = 8.41$ Evaluate powers. $a^2 = 4$ Subtract 4.41 from each side.a = 2Take positive square root of each side.

The missing length is 2 centimeters.

#### **EXAMPLE 3** Real-Life Application


You are playing capture the flag. You are 50 yards north and 20 yards east of your team's base. The other team's base is 80 yards north and 60 yards east of your base. How far are you from the other team's base?

|   | 90       | N   |      |     |     |    |    |    |      |     |
|---|----------|-----|------|-----|-----|----|----|----|------|-----|
|   | 80       |     |      | Otl | her | Ва | se | (6 | 0, 8 | 30) |
|   | 80<br>70 |     |      |     |     | ,  | 1  |    |      |     |
|   | 60       |     |      |     | 1   | 1  |    | 30 | ) yc | k   |
|   | 50       |     | ่วน  | 1   | _   |    | Γ  |    |      |     |
|   | 40       | (20 | ), S | 0)_ | 40  | yd |    |    |      |     |
|   | 30       |     |      |     |     |    |    |    |      |     |
|   | 20       |     |      |     |     |    |    |    |      |     |
|   | 10       |     |      |     |     |    |    |    |      |     |
| - |          |     |      | Ba  |     |    |    |    |      | ->  |
| Ŵ |          | 1   | 02   | 03  | 04  | 05 | 06 | 07 | 08   | 0 E |
|   | 1        | S   |      |     |     |    |    |    |      |     |


- **Step 1:** Draw the situation in a coordinate plane. Let the origin represent your team's base. From the descriptions, you are at (20, 50) and the other team's base is at (60, 80).
- **Step 2:** Draw a right triangle with a hypotenuse that represents the distance between you and the other team's base. The lengths of the legs are 30 yards and 40 yards.
- **Step 3:** Use the Pythagorean Theorem to find the length of the hypotenuse.

 $a^2 + b^2 = c^2$ Write the Pythagorean Theorem. $30^2 + 40^2 = c^2$ Substitute 30 for a and 40 for b. $900 + 1600 = c^2$ Evaluate powers. $2500 = c^2$ Add.50 = cTake positive square root of each side.

So, you are 50 yards from the other team's base.



5. In Example 3, what is the distance between the bases?



Printable Math Worksheets @ www.mathworksheets4kids.com

#### Pythagorean Theorem Word Problems

Draw a picture and then use the pythagorean theorem to solve for the missing side.

1. The bottom of a ladder must be placed 3 feet from a wall. The ladder is 10 feet long. How far above the ground does the ladder touch the wall?

2. A soccer field is a rectangle 100 meters wide and 130 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance?

3. How far from the base of the house do you need to place a 15-foot ladder so that it exactly reaches the top of a 12- foot tall wall?

4. What is the length of the diagonal of a 10 cm by 15 cm rectangle?

5. The diagonal of a rectangle is 25 in. The width is 15 inches. What is the length?

6. Two sides of a right triangle are 8 and 12. Find the hypotenuse.

7. A baseball diamond is a square that is 90 feet on each side. What is the distance a catcher has to throw the ball from home to second base?

8. David leaves the house to go to school. He walks 200m west and 125m north. How far away is he from his starting point? (the diagonal)

9. A park is in the shape of a rectangle 8 miles long and 6 miles wide. How much shorter is your walk if you walk diagonally across the park than along the two sides of it?