
NOTES

Piecewise Functions –

Algebraically

$$f(x) = \begin{cases} 2x + 8, & x \le -2\\ x^2 - 3, & -2 < x \le 3\\ \sqrt{x + 3}, & x > 3 \end{cases}$$

$$f(-4) =$$

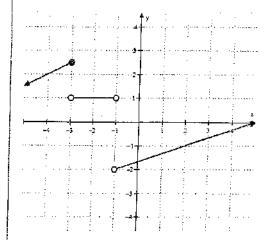
$$f(6) =$$

$$f(-2) =$$

$$f(0) =$$

TRY IT!

$$f(x) = \begin{cases} 2x^3 - 1, & x < 1 \\ 3, & 1 \le x < 5 \\ |x - 2|, & x \ge 5 \end{cases}$$


$$f(8) =$$

$$f(0) =$$

$$f(4) =$$

$$f(5) =$$

Graphically

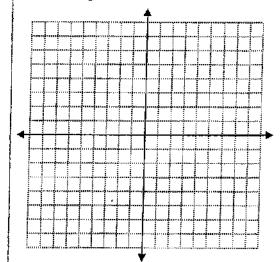
$$f(2) =$$

$$f(-3) =$$

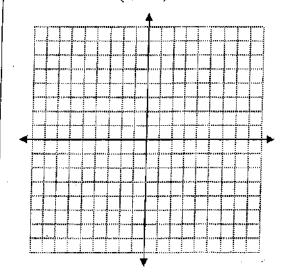
$$f(-1) =$$

$$f(-4) =$$

$$f(0) =$$


$$f(-4) =$$

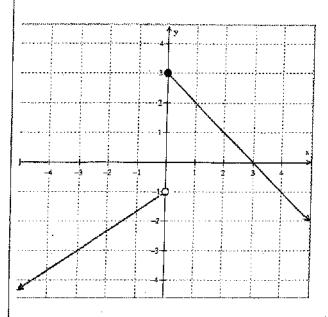
$$f(-1) =$$


$$f(3) =$$

TRY IT!

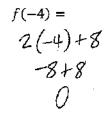
$$f(x) = \begin{cases} -2x + 1, & x < 0 \\ \frac{z}{3}x - 3, & x \ge 0 \end{cases}$$

$$f(x) = \begin{cases} 5, & x \le 2\\ 2x - 4, & x > 2 \end{cases}$$



SUMMARY:

Now, ummarize l our notes here!



Piecewise Functions -

Algebraically

$$f(x) = \begin{cases} 2x + 8, & x \le -2 \\ x^2 - 3, & -2 < x \le 3 \\ \sqrt{x + 3}, & x > 3 \end{cases}$$

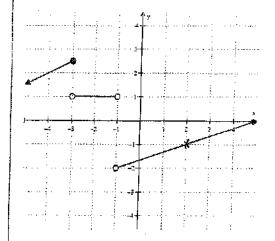
$$f(6) = \sqrt{(6) + 3}$$

$$\sqrt{9}$$
3

$$f(-2) = 2(-2) + 8$$

$$-4 + 8$$

$$4$$

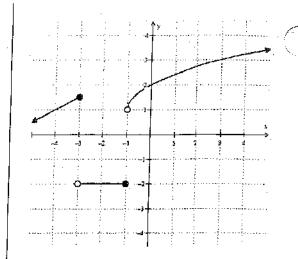

$$f(0) = (0)^{3} - 3$$
$$-3$$

TRY IT!

$$f(x) = \begin{cases} 2x^3 - 1, & x < 1\\ 3, & 1 \le x < 5\\ |x - 2|, & x \ge 5 \end{cases}$$

$$\begin{cases}
f(0) = \\
2(0)^3 - 1 \\
-1
\end{cases}$$

Graphically

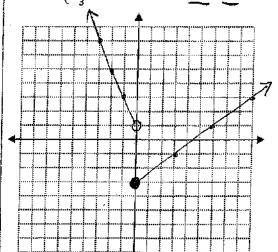


$$f(2) = -$$

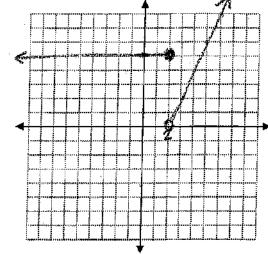
$$f(-3) = 2.6$$

$$f(-1) = \emptyset$$

$$f(-4) = 2$$


$$f(0) = \int_{0}^{\infty}$$

$$f(-4) = |$$


$$f(-1) = -2$$

$$f(3) = 3$$

TRY IT!
$$f(x) = \begin{cases} -2x + 1, & x < 0 \\ \frac{2}{3}x - 3, & x \ge 0 \end{cases} \le 2 \text{ closed}$$

$$f(x) = \begin{cases} 5, & x \le 2 \\ 2x - 4, & x > 2 \end{cases}$$

SUMMARY:

Now, ummarize . our notes

$$f(x) = \begin{cases} -2x^2 - 1, & x \le 2\\ \frac{4}{5}x - 4, & x > 2 \end{cases}$$

$$i. f(0) =$$

b.
$$f(5) =$$

$$f(x) = \begin{cases} x^3 - 7x, & x \le -3\\ 8, & -3 < x \le 3\\ \sqrt{2x + 3}, & x > 3 \end{cases}$$

$$a. f(-5) =$$

b.
$$f(11) =$$

$$. f(2) =$$

d.
$$f(-3) =$$

c.
$$f(0) =$$

d.
$$f(3) =$$

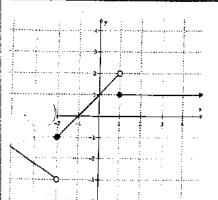
$$f(x) = \begin{cases} \frac{3}{x+4}, & x < -5\\ x^2 - 3x, & -5 < x \le 0\\ x^4 - 7, & x > 0 \end{cases}$$

$$f(-1) =$$

$$f(-1) =$$
 b. $f(4) =$

$$f(x) = \begin{cases} |2x+7|, & x \le -4\\ 1+x^2, & -4 < x \le 1\\ 6, & 1 < x < 3\\ \frac{1}{3}x+8, & x \ge 3 \end{cases}$$

$$a. f(5) =$$

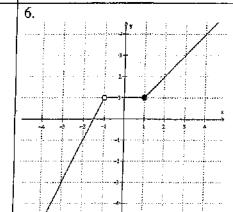

b.
$$f(1) =$$

$$f(-10) =$$

d.
$$f(0) =$$

c.
$$f(-4) =$$

d.
$$f(2) =$$

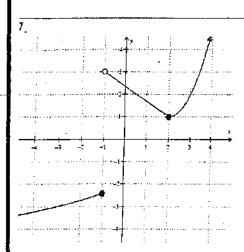


$$\alpha. f(-1) =$$

b.
$$f(2) =$$

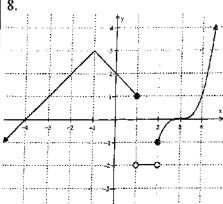
c.
$$f(1) =$$

d.
$$f(-2) =$$

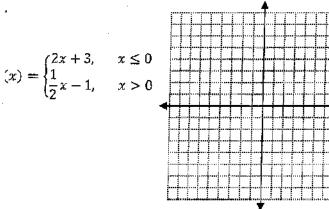


a.
$$f(-3) =$$

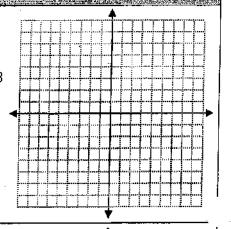
b.
$$f(4) =$$

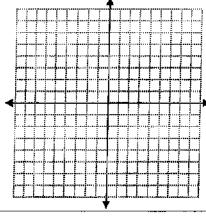

c.
$$f(1) =$$

d.
$$f(-1) =$$



- a. f(3) =
- b. f(-1) =
- c. f(-3) =
- d. f(2) =
- e. f(0.5) =




- a. f(-4) =
- -- b. f(1) =
 - c. f(3) =
 - d. f(2) =
 - e. f(1.5) =

$$f(x) = \begin{cases} -\frac{1}{3}x - 1, & x \le 3 \\ 2, & x > 3 \end{cases}$$

$$(x) = \begin{cases} 4 - x, & x < 2 \\ 2x - 6, & x \ge 2 \end{cases}$$

12.

$$f(x) = \begin{cases} \frac{2}{3}x + 3, & x \le 0 \\ 3, & 0 < x < 2 \\ -\frac{1}{2}x, & x \ge 2 \end{cases}$$

GRAPH a f(-1)b. y-intercept =

SIMPLIFY

Simplify the radical.

a. $\sqrt{24}$

b. $4\sqrt{40}$

SOLVE

Solve for x.

a.
$$15 = \frac{5}{x} + 4$$

FACTOR b.
$$x^2 - 12x + 35$$

c. f(x) = 1 when x =

PRACTICE

.ne piecewise function to evaluate the following.

$$f(x) = \begin{cases} -2x^2 - 1, & x \le 2\\ \frac{4}{5}x - 4, & x > 2 \end{cases}$$

$$x \leq 2$$

$$(x) = \begin{cases} 4 \\ -x - 4, \end{cases}$$

b.
$$f(5) =$$

$$-3(0)^{3}-1$$
 $\frac{4}{5}(5)-4$

$$\mathcal{O}$$

$$f(2) =$$

i. f(0) =

d.
$$f(-3) =$$

$$-2(8)^{3}-1$$
 $-2(-3)^{3}-1$ $-3.9-1$

$$f(x) = \begin{cases} x^3 - 7x, & x \le -3 \\ 8, & -3 < x \le 3 \\ \sqrt{2x + 3}, & x > 3 \end{cases}$$

a.
$$f(-5) =$$

b.
$$f(11) =$$

$$f(-5) =$$
 b. $f(11) =$ $(-5)^3 - 7(-5)$ $\sqrt[3]{0(1)} + 3 = \sqrt[3]{5}$

c.
$$f(0) =$$

d.
$$f(3) =$$

$$f(x) = \begin{cases} \frac{3}{x+4}, & x < -5\\ x^2 - 3x, & -5 < x \le 0\\ x^4 - 7, & x > 0 \end{cases}$$

$$f(x) = \begin{cases} |2x+7|, & x \le -4\\ 1+x^2, & -4 < x \le 1\\ 6, & 1 < x < 3\\ \frac{1}{3}x+8, & x \ge 3 \end{cases}$$

$$f(-1) =$$
 b. $f(4) =$ $(-1)^3 - 3(-1)$ $(4)^4 - 7$

b.
$$f(4) =$$

$$a. f(5) =$$

b.
$$f(1) =$$

$$f(-10) =$$

d.
$$f(0) =$$

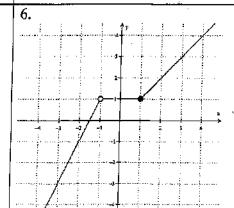
$$\frac{3}{(-10)+4} - \frac{3}{-6} \qquad (0)^2 - 3(0)$$

-1/2

$$(0)^{2}-3(0)$$

c.
$$f(-4) =$$

d.
$$f(2) =$$

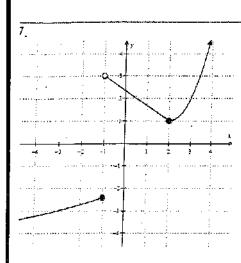

a.
$$f(-1) = 0$$
b. $f(2) = 0$

$$a. f(-1) = \int_{-\infty}^{\infty}$$

b.
$$f(2) = 1$$

c.
$$f(1) =$$

d.
$$f(-2) = -1$$



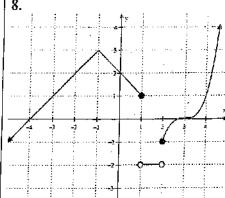
a.
$$f(-3) = -3$$

b.
$$f(4) = \bigvee$$

c.
$$f(1) =$$

d.
$$f(-1) = 0$$

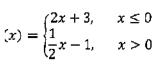
$$a. f(3) = 2$$

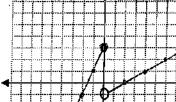

b.
$$f(-1) = -2.5$$

$$rac{1}{2}$$
 c. $f(-3) = -3$

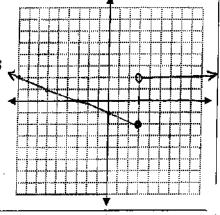
d.
$$f(2) =$$

e.
$$f(0.5) = 2$$

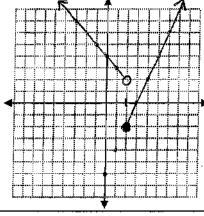

$$a. f(-4) = 0$$

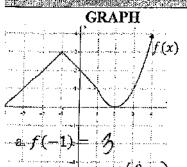

b.
$$f(1) = \int_{-\infty}^{\infty}$$

c.
$$f(3) = 0$$


$$d. f(2) = -1$$

e.
$$f(1.5) = -\sqrt{2}$$




$$f(x) = \begin{cases} -\frac{1}{3}x - 1, & x \le 3\\ 2, & x > 3 \end{cases}$$

$$x) = \begin{cases} 4 - x, & x < 2 \\ 2x - 6, & x \ge 2 \end{cases}$$

$$f(x) = \begin{cases} \frac{2}{3}x + 3, & x \le 0\\ 3, & 0 < x < 2\\ -\frac{1}{2}x, & x \ge 2 \end{cases}$$

b. y-intercept = (0,3)

c.
$$f(x) = 1$$
 when $x = 1$

c.
$$f(x) = 1$$
 when $x = \frac{1}{2}$

 $^{-1}$ x-intercept(s) = $(\partial, 0)$

SIMPLIFY

Simplify the radical.

a.
$$\sqrt{24}$$
 $\sqrt{4}$ $\sqrt{6}$ = $2\sqrt{6}$

SOLVE

Solve for x. a. $15 = \frac{5}{7} + 4$

b.
$$x^2 - 12x + 35$$

$$(x-1)(x-5)$$

Use the piecewise function to evaluate the following.

$$f(x) = \begin{cases} \frac{3}{x-2}, & x < -3\\ 2x^2 - 3x, & -3 < x \le 6\\ 8, & x > 6 \end{cases}$$
b. $f(-4) =$

c.
$$f(9) =$$

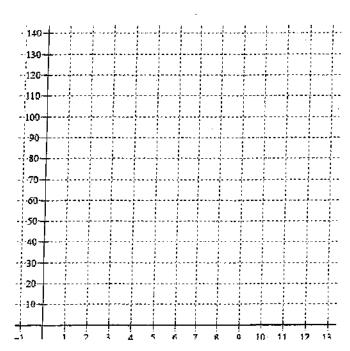
a. f(-1) =

2. Graph the following piecewise function.

$$f(x) = \begin{cases} -\frac{1}{3}x - 2, & x \le 0\\ \frac{1}{2}x + 1, & x > 0 \end{cases}$$

3. NUMERICALLY Use the piecewise function to fill in the table.

d. f(6) =


$$f(x) = \begin{cases} -x + 4, & x \le 0 \\ -3x + 18, & x > 0 \end{cases}$$

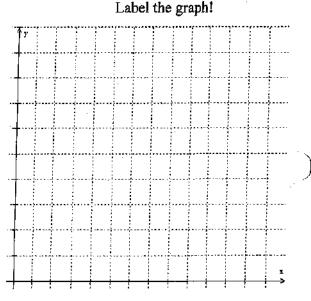
	T(x)
-2	
0	
1	
	-12
	9

• GRAPHICALLY Sully's blood pressure changes throughout the school day. Sketch a graph of his blood pressure over time. LABEL THE GRAPH! Let x stand for the time since 0800, so 1000 would be x = 2, 1200 would be x = 4, etc...

ılly's Day

- Sully's blood pressure starts at 90 and rises 5 points every hour for the first 4 hours.
- Sully chills out for lunch from 12-1 and maintains a cool 110 blood pressure.
- Tast period of the day hits from 1-3 and Sully's blood lessure rises from 110 at 10 points per hour.
- School ends and Sully's blood pressure starts dropping 2 points per hour until his 8 o'clock bedtime.

5. ALGEBRAICALLY Use the picture of the piecewise function to answer the following.


GRAPH	Equation of the pieces	Domain for the pieces	Piecewise function	
- I man the second of the seco			_	
			(f(x)	
		i	f(x) = -	
			1	
			_	

6. VERBALLY Mr. Brust wants to make t-shirts for his Algebra 2 students (shown below). Custom Ink will make the shirts for the following cost. Write a piecewise function to represent individual cost of a t-shirt as function of

the number of shirts made. Graph it!

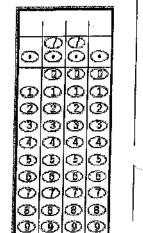
Do you want a PIECE of me?

0-20 shirts = \$25 each 21-30 shirts = \$20 each 31-50 shirts = \$15 each 51+ shirts = \$10 each

7. SAT PREP Below are sample SAT questions. The SAT is the main standardized test that colleges look at for admission. One is multiple choices; the other is free response where you must grid in your answer. Blow it up.

MULITPLE CHOICE

f(x) =


A regulation for riding a certain amusement park ride equires that a child be between 30 inches and 50 inches all. Which of the following inequalities can be used to letermine whether or not the child's height h satisfies the egulation for this ride?

- (A) |h-10| < 50
- (B) |h-20| < 40
- (C) |h-30| < 20
- (D) |h 40| < 10
- (E) |h-45| < 5

GRID IN

If x < 0 < y, find the value of x + y given:

$$2|x - 9| = 24$$

 $|xy| = 15$

Ise the piecewise function to evaluate the following.

Jse the piecewise function to evaluate the follow
$$f(x) = \begin{cases} \frac{3}{x-2}, & x < -3 \\ 2x^2 - 3x, & -3 < x \le 6 \\ 8, & x > 6 \end{cases}$$

$$\alpha. f(-1) = b. f(-4) = 2$$

$$2(-1)^3 - 3(-1)$$

$$2(-1)^3 - 3(-1)$$

$$2(-1)^3 - 3(-1)$$

$$2(-1)^3 - 3(-1)$$

$$2(-1)^3 - 3(-1)$$

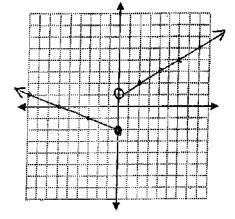
$$2(-1)^3 - 3(-1)$$

$$a. f(-1) =$$

b.
$$f(-4) =$$

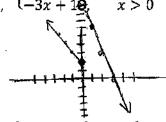
$$\frac{2}{(-4)-2} = \frac{2}{-6} = \frac{-1/3}{3}$$

c.
$$f(9) =$$


d.
$$f(6) =$$

$$2(6)^{2}-3(6)$$

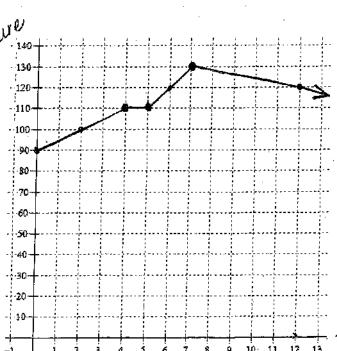
$$12-18=54$$


2. Graph the following piecewise function.

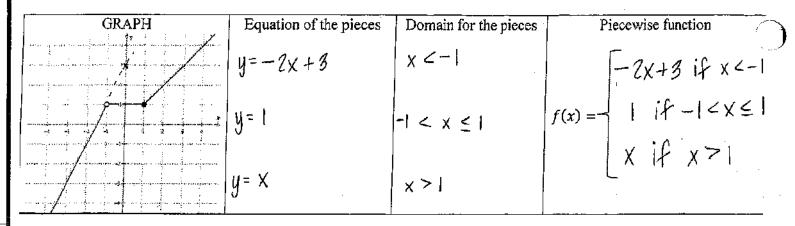
$$f(x) = \begin{cases} -\frac{1}{3}x - 2, & x \le 0\\ \frac{1}{2}x + 1, & x > 0 \end{cases}$$

3. **NUMERICALLY** Use the piecewise function to fill in the table.

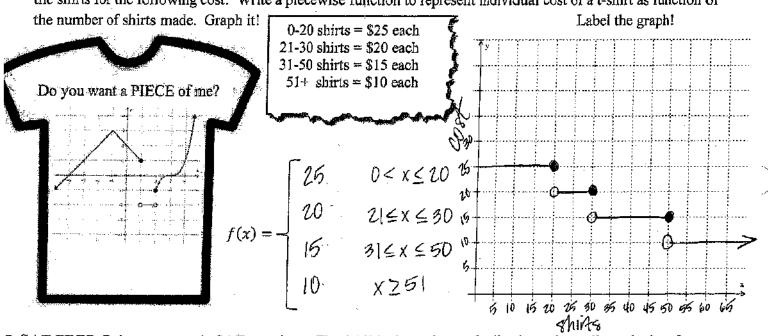
$$f(x) = \begin{cases} -x + 4, & x \le 0 \\ -3x + 19, & x > 0 \end{cases}$$



	- flw]
-2	6	-(-2)+4
0	4	-(0)+4
1	15	-3(1)+18
10	-12	
6 2	9	


- GRAPHICALLY Sully's blood pressure changes throughout the school day. Sketch a graph of his blood pressure over time. LABEL THE GRAPH! Let x stand for the time since 0800, so 1000 would be x = 2, 1200 would be x = 4, etc...

illy's Day


- Sully's blood pressure starts at 90 and rises 5 points every hour for the first 4 hours.
- $(\chi = 4-6)$ Sully chills out for lunch from 12-1 and maintains a cool 110 blood pressure.
- $(\chi = 6 1)$ ast period of the day hits from 1-3 and Sully's blood lessure rises from 110 at 10 points per hour.
- School ends and Sully's blood pressure starts dropping 2 points per hour until his 8 o'clock bedtime.

5. ALGEBRAICALLY Use the picture of the piecewise function to answer the following.

6. VERBALLY Mr. Brust wants to make t-shirts for his Algebra 2 students (shown below). Custom Ink will make the shirts for the following cost. Write a piecewise function to represent individual cost of a t-shirt as function of

7. SAT PREP Below are sample SAT questions. The SAT is the main standardized test that colleges look at for admission. One is multiple choices; the other is free response where you must grid in your answer. Blow it up.

#