
NOTES: SCIENTIFIC NOTATION

WHAT IS SCIENTIFIC NOTATION?

 A shorter way to express very long numbers (numbers that are either very LARGE such as 6,000,000 or that are very small such as 0.000000000001).

Note: NO comas are used in scientific notation.

2 × 10⁹ 2.000000000 1 2 3 4 5 6 7 8 9 2,000,000,000

Example: The distance between New York City and San Francisco = 4,741,000m 4,741,000m = (4.741 x 1,000,000)m or 4.741 x 10⁶m

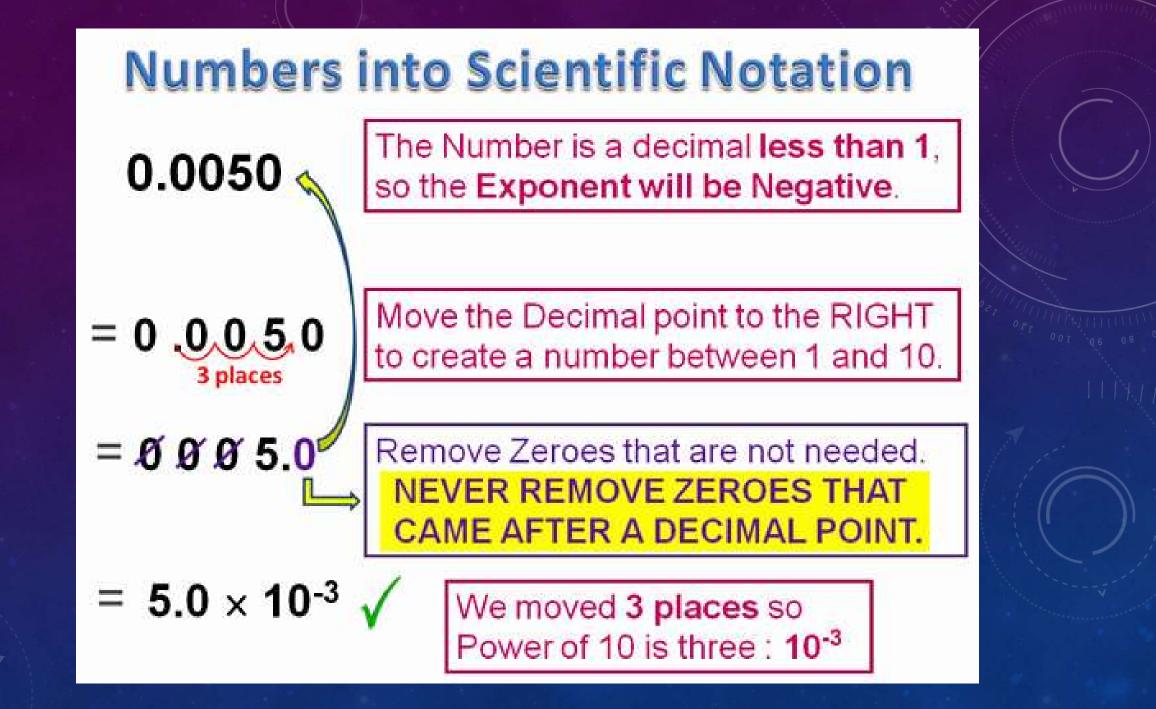
RULES FOR USING SCIENTIFIC NOTATION

- 1. Put the decimal after the first non-zero digit so you have a number between one and ten
- Example: 1200 becomes 1.2 x 10³
- 2. Count the number of places the decimal was moved.
- Using the example above... the decimal was moved 3 places to the left so it equals 10³
 - When you move the decimal point to the LEFT = positive exponent (+)
 - When you move the decimal point to the **RIGHT** = negative exponent (-)
- 3. Addition and subtraction MUST have like powers of 10
- Example: $(3.4 \times 10^{2}) + (5.7 \times 10^{2}) = 9.1 \times 10^{2}$
- 4. Multiplication adds the exponents and multiplies the digits
- Example: 10^a x 10^b = 10^{a + b}
- $(2.1 \times 10^3) \times (5.8 \times 10^2) = 12.18 \times 10^5 = 12 \times 10^5$
- 5. Division subtracts the exponents and divides the digits
- Example: 100^a / 100^b = 10^{a b}

Numbers into Scientific Notation

0.0043

The Number is a decimal less than 1, so the Exponent will be Negative.


Move the Decimal point to the RIGHT to create a number between 1 and 10.

= ØØØ4.3

Remove Zeroes that are not needed.

= 4.3 × 10⁻³ 🗸

We moved **3 places** so Power of 10 is three : **10**⁻³

PRACTICE

- Convert each of the following into scientific notation:
 - 1. 248,000g =
 - 2. 0.000091kg =
 - 3. 25,000,000m =
- Convert each of the following into decimal form:
 - 4. 523.9 x 10-5 =
 - 5. 0.56 x 105 =
- Calculate each of the following:
 - 6. (2.6 x 105) + (3.4 x 105) =
 - 7. (7.5 x 102) x (6.45 x 108) =
 - 8. (4.6 x 107) / (2.42 x 105) =

Scientific notation	Expanded form
1×10^{-9} 1×10^{-6} 1×10^{-3} 1×10^{-2}	0.000000001
	0.000001
	0.001
	0.01
1 × 10 ⁰	1
1 x 10 ³	1,000
1 x 10 ⁶	1,000,000
1 x 10 ⁹	1,000,000,000

PRACTICE PROBLEMS - KEY

Convert each of the following into scientific notation:

- 1. 248,000g = 2.48×10^5
- 2. 0.000091kg = 9.1 x 10⁻⁵
- 3. 25,000,000m = 2.5 x 10⁷

Convert each of the following into decimal form: 4. $523.9 \times 10^{-5} = 0.005239$ 5. $0.56 \times 10^{5} = 56,000$

Calculate each of the following:

6. $(2.6 \times 10^5) + (3.4 \times 10^5) = 6.0 \times 10^5$

- 7. $(7.5 \times 10^{2}) \times (6.45 \times 10^{8}) = 48.375 \times 10^{10} = 48.4 \times 10^{10}$
- 8. $(4.6 \times 10^{7}) / (2.42 \times 10^{5}) = 1.90 \times 10^{2}$

