Life Science 7 Chapter 5-2 p120-125 "Traits and Inheritance"

Objectives

Genotype vs. Phenotype

genotype:

	Explain how genes and alleles are related to genotype and phenotype
•	Use the information in a Punnet Square
•	Explain how probability can be used to predict possible genotypes in offspring.
Chr	Describe three exceptions to Mendel's observations. romosomes and Genes
•	Mendel did not know how cells distributed "factors", nor what the "factors" were
•	Over thirty years later, Walter Sutton proposed that Mendel's "factors" were chromosomes
	gene-
•	allele-
Alle	equivalent to Mendel's "factors" ele Notation
•	dominant alleles represented by
	• ex) "tall plant" is dominant over "short plant", so = tall
•	recessive alleles represented by of the same letter as the dominant allele
Ho	ex) "short plant" is recessive to "tall plant", so "short plant" = mozygous vs Heterozygous
•	homozygous: condition in which the two alleles for a trait are
	• ex: For tall plant:, or short plant:
•	heterozygous: condition in which the two alleles for a trait are
	• ex: Tall plant: (since T is dominant, it masks the short allele)

• ex: For a heterozygous tall plant, the genotype would be "______"

ex: For a homozygous tall plant, the	genotype would be ""
• phenotype: the	of an organism
• ex: For a plant with GENOTYPE tt,	the phenotype is ""
Punnet Squares	
Punnet square:	
To make a Punnet square:	
• 1) make a 2 X 2 square	
write the alleles for the and the alleles for the	parent along the top of the square, along the left side
 3) In each of the middle squares, wis square 	rite the two alleles that intersect in that
present!	allele first, if one is
Example: Punnet Square	
pure short plant (homozygous short). Tal 1) make 2 X 2 square 2) write alleles for female on top, m 3) fill in squares with alleles from w Make a Punnet Square below!	ale on side
Probability	
probability:	
• Ex: What is the probability of rolling an e	even number on a dice:

	possible even numbers out of 6 on a dice, so
the probability would be	
(all of these are the same thing!)	
Calculating Probabilities	
•	nan one event occurring, you justent occurring, assuming that the events are each other)
• Ex: What is the probability of getting times?	three heads in a row when you flip a coin three
• Ans:	
Example: Probabilities in Genetics	
 If you crossed two plants that are hete plant? (Tall is dominant to short) 	erozygous, what is the probability of getting a tall
Make a Punnet Square →	
 After filling in the Punnet square, are tall, so the probability would be Exception #1 To Mendel's Principles: I 	
• incomplete dominance	
offspring have an intermediate phenoex) snapdragons	type from the two alleles
Chandragan Dunnet cquare	

Snapdragon Punnet square

• In cases of incomplete dominance, we use the prime symbol (') instead of small letters to indicate the second allele

Make a Punnet Square representing snapdragons here
--

- So R = red
- \blacksquare R' = white
- Results: genotypes: 100% RR'
- Phenotypes: 100% pink

Snapdragon (F1)

• Here's the F₁ generation of 4 o'clock flowers

Make a Punnet Square representing snapdragons here

- Results:
 - 1:2:1 (RR, RR', R'R') genotypes
 - 1:2:1 (red, pink, white) phenotypes

Exception #2: One Gene, Many Traits

- Sometimes, a single gene influences several traits, so Mendel's rules aren't as obvious
- Ex: the gene that causes ______ affects fur color, as well as eye color
- in humans, the gene also affects vision!

Exception #3: Many Genes, One Trait

- Sometimes, it takes several genes to express one trait.
- Ex:

• These traits tend to have a wide range of possibilities!

Importance of Environment

- Our traits are not only due to our genes!
- Environmental factors play a role in our development.
- ex: Just because you have Olympic gold medal athletes as parents does not mean that you will be a super athlete!
- you need to ______ to be successful! (all environmental factors)