Chapter 5-1 p114-119 "Mendel and His Peas"

"Mendel and His Peas"
Objectives
Explain the relationship between traits and heredity.
Describe the experiments of Gregor Mendel.
Explain the difference between dominant and recessive traits. What is Heredity?
heredity:
Some traits can be easily traced (widow's peak, earlobe attachment, etc), while others are more challenging (eye color, skin color, hair color)
Gregor Mendel performed the first recorded experiments in an attempt to explain how heredity worked. Gregor Mendel
entered a monastery at age 21 in Brunn, Austria, where he tended the garden
Used his training in math and science from the to study inheritance patterns in the plant
Mendel looked at several varieties of pea plants when doing his experiments
Pea plants turned out to be a good choice for several reasons
1) (grow quickly, are <u>self-pollinating</u>)
2) traits are found in
3) traits showMendel's Experiements
Mendel is known for his excellent experimental designs, and record keeping
1 st Step: Mendel produced true-breeding plants for the trait he was interested in true breeding -
■ To produce pure plants, he allowed a plant to self-fertilize■ self-pollination-

	2 nd Ste	ер	
			rom the
		Mendel kept track of the traits of each plant in the second generation	
	3 rd Ste	ер	
		Mendel crossed two members("children" of the first plants)	
		Mendel again kept track the traits of all of the members of the next ger $(3^{rd}$ generation)	neration
Mer	observ	el repeated these three steps thousands of times, on each of the 7 trai ved Results and Conclusions	ts he
	After c	crossing the 1st generation, of the 2 nd generation plants of the traits	had
		ex: if you crossed a true-breeding tall plant with a true-breeding shor all of the offspring were	t plant,
	For the	e 3 rd generation plants, the trait that disappeared in the 2 nd generation	
		Results: 3 rd Generation of Dominance and Recessiveness	
	each t	trait had two "factors"	
	one "fa	actor" masked the other factor in the F ₁ generation-	
	the oth	her "factor" was masked by the dominant factor-	