Logarithms - A refresher

Here are the things to remember about logarithms:

Logarithms are exponents! Which means that $\log_b n = a_{\text{can be re-written as}} b^a = n$

Properties of logs to remember:

$$\log ab = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log a^b = b \log a$$

If
$$a = b$$
 then $\log a = \log b$ and vice versa

 $\log a_{\mathrm{means}} \log_{10} a_{\mathrm{(and is called the common log)}}$

 $\ln a_{\rm means} \log_e a_{\rm (and is called the natural log)}$

To change any log into a common log, you can use the change of base formula:

$$\log_b a = \frac{\log a}{\log b}$$

Logarithmic functions and exponential functions are inverses of each other. So, for example,

$$f(x) = 2^x_{\text{and}} f^{-1}(x) = \log_2 x_{\text{are inverses. The inverse of }} g(x) = e^x_{\text{is}}$$

 $g^{-1}(x) = \ln x$

To solve an equation with logs, condense both sides of the equation and either re-write in exponential form (i.e. $\log_b n = a$ becomes $b^a = n$) or, if you have $\log a = \log b$, then you can state that a = b and solve it that way.

Let's try some problems!

Log Refresher Practice

- 1) If $\log_x 9 = -2$, what is the value of x?
 - A) $\frac{1}{3}$

B) 3

C) $\frac{1}{81}$

D) 81

- 2) The value of $e^{3 \ln 4}$ is
 - A) 12

B) 64

C) e^{12}

D) ln 12

- 3) Which logarithmic equation is equivalent to $L^m = E$?
 - A) $\log_E L = m$
- B) $\log_E m = L$
- C) $\log_m E = L$
- D) $\log_L E = m$

4) Find the value of $\log_3 \frac{1}{3}$.

5) Find the value of x: $\log_9(x) = \frac{3}{2}$

6) Find the value of x: $log_4 (3x + 1) = 2$

7) Solve for *x*:
$$\log_x 3 = \frac{1}{2}$$

8) Solve for x:
$$\log_x \frac{1}{16} = -2$$

Questions 9 and 10 refer to the following:

Evaluate the given expression without using a calculator.

9)
$$\log_2 64 \cdot \log_9 27$$

10)
$$2 \ln e - \ln \frac{1}{e}$$

11) Find the value of the given expression correct to the nearest hundredth.

$$\frac{2 \ln 21 - \ln \sqrt{7}}{\ln 4}$$

12) If $\log_{(a+1)} 27 = 3$, find the value of *a*.

13) The cells of a particular organism increase logarithmically. If g represents cell growth and h represents time, in hours, which graph best represents the growth pattern of the cells of this organism?

Which of the following is the inverse relation of $y = \log_4 x$? 14)

A)
$$y^4 = x$$

B)
$$x^4 = y$$

C)
$$4^{y} = x$$

D)
$$4^{x} = v$$

An asymptote for the graph of $f(x) = \ln x$ is 15)

A)
$$y = -x$$

B)
$$y = x$$

C)
$$x = 0$$

D)
$$y=0$$

The expression log 12 is equivalent to 16)

A)
$$\log 3 + 2 \log 2$$
 B) $\log 3 \cdot \log 4$

C)
$$\log 3 - 2 \log 2$$

D)
$$\log 6 + \log 6$$

17) The expression $\ln(\sqrt{x} \sqrt[3]{y})$ is equivalent to

A)
$$\frac{1}{2} \ln x + \frac{1}{3} \ln y$$

B)
$$\frac{1}{6}(\ln x + \ln y)$$

A)
$$\frac{1}{2} \ln x + \frac{1}{3} \ln y$$
 B) $\frac{1}{6} (\ln x + \ln y)$ C) $\frac{1}{2} \ln x - \frac{1}{3} \ln y$ D) $\frac{1}{6} \ln (xy)$

D)
$$\frac{1}{6} \ln (xy)$$

- The expression $\log a + \frac{1}{2} \log b$ is equivalent to
 - A) $\log (a + \sqrt{b})$

C) $(\log a)(\frac{1}{2}\log b)$

B) $\log a\sqrt{b}$

D) $\log \sqrt{ab}$

- The expression $\ln{(\frac{6}{e^{3x}})}$ is equivalent to

- B) $\ln 6 x^3$
- C) $\ln 6 3x$
- D) 6 3x

- 20) The expression $\log_5 \sqrt{\frac{M^3}{N}}$ is equivalent to
 - A) $\frac{3}{2}(3 \log_5 M \log_5 N)$

C) $\frac{3}{2} 3 \log_5 M - \log_5 N$

B) $\frac{1}{2} \log_5 M - 3 \log_5 N$

- D) $\frac{1}{2}(3 \log_5 M \log_5 N)$
- The expression $\frac{1}{3} \log (a) 3 \log (b)$ is equivalent to 21)
 - A) $\log \frac{\sqrt[3]{a}}{k^3}$
- B) $\log \frac{a}{3h^3}$
- C) $\log(\sqrt[3]{a} b^3)$ D) $\log\frac{\sqrt[3]{a}}{3h}$
- Which of the following equations is equivalent to $x \log 3 + 7 \log 3 = 3 \log 5$? 22)
 - A) $3^{7x} = 5^3$
- B) $3^{x+7} = 5^3$
- C) $(x+7)^3 = 125$
- D) 3x + 21 = 15
- Given that $\log_2 3 = x$, $\log_2 5 = y$, and $\log_2 7 = z$, what is $\log_2 \frac{15}{7}$ expressed in terms of x, y, and z?
 - A) 1 + x z

- C) x+y-z

- 24) If $\log a = x$ and $\log b = y$, what is $\log a\sqrt{b}$?
 - A) x + 2y
- B) $\frac{x+y}{2}$

- C) 2x + 2y
- $D) \quad x + \frac{y}{2}$

- 25) If $\log a = 2$ and $\log b = 3$, what is the numerical value of $\log \frac{\sqrt{a}}{b^3}$?
 - A) 25

B) -25

C) -8

D) 8

- 26) Which of the following statements are true?
 - $I. \qquad \log(3 \cdot 5) = 3 \log 5$
 - II. $\log(3 \cdot 5) = \log 3 + \log 5$
 - III. $\log(3 \cdot 5) = \log 3 \cdot \log 5$
 - $IV. \log(3 \cdot 5) = \log 15$
 - A) I, only
 - B) II, III, and IV, only

- C) I, II, and III, only
- D) II and IV, only

- 27) Solve for x: $\log_x 4 + \log_x 9 = 2$
 - A) 6

B) 6.5

C) 18

D) $\sqrt{13}$

- 28) Solve for x: $\log(x 3) = (\log x \log 2)$
 - A) $\frac{3 + \sqrt{11}}{2}$
- B) $\frac{5}{2}$

C) 6

D) (2, 1)

- 29) Solve for x: $\log_2(x-3) + \log_2(x+1) = 5$
 - A) {-7, 5}
- B) 7, only
- C) {-5, 7}
- D) 5, only

- 30) If $\log(x-3) + \log(x+4) \log x = \log 5$, then the solution set for x is
 - A) {-2, 6}
- B) {-6, 2}
- C) $\{2, 6\}$

D) {6}

31) Solve for x to the nearest tenth: $4^x = 28$

32) Solve for x to the nearest tenth: $6^{2x-1} = 73$

33) Solve for x: $\log_3(x^2 - 4) - \log_3(x + 2) = 2$

34) Solve the given equation for x. [Express the solution correct to the nearest hundredth.] $\ln (2x) = 5$

- I) A 2) B 3) D
- 4) -1
- 5) 27
- 6) 5
- 7) 9
- 8) 4
- 9) 9
- 10) 3
- 11) 3.69
- 12) 2
- 13) C 14) D 15) C 16) A 17) A
- 18) B 19) C 20) D 21) A 22) B
- 23) C 24) D 25) C 26) D 27) A
- 28) C 29) B 30) D
- 31) 2.4
- 32) 1.7
- 33) 11
- 34) 74.21