Which of the following diagrams is a reasonable graph of $y = 2^x - 3$?

2) Which of the following equations could be represented by the graph below?

A)
$$y = \log_{\kappa} 2$$
 B) $y = 2^{\kappa}$

B)
$$y = 2^{x}$$

C)
$$y = \log_2 x$$

D)
$$y = 2^{-x}$$

3) Which equation is equivalent to $y = 10^{x}$?

A)
$$y = (\frac{1}{10})^x$$

B)
$$y = 10^{-x}$$

C)
$$y = (\frac{1}{10})^{-x}$$

D)
$$y = -10^{-x}$$

(a) Sketch and label the graph of the equation $y = 3^x$. 4)

(b) On the same set of axes, sketch and label the reflection of the graph of $y = 3^x$ in the line y = x.

(c) Write the equation for the reflected graph sketched in part (b).

(d) Using the graph sketched in part (b), describe the behavior of the graph in Quadrant IV as x approaches O.

- 5) Solve: $100^{k+2} = 1,000^{k-1}$
- 7) Solve: $9^{2x} = (\frac{1}{3})^{x+1}$
- 8) Which equation is equivalent to $y = 3^{x}$?
 - A) $\log_y x = 3$
- B) $\log_3 y = x$
- C) $\log_y 3 = x$
- D) $\log_3 x = y$

- What is $y = (\sqrt{5})^{X}$ written in logarithmic form?
 - A) $x = \log_y(\sqrt{5})$ B) $y = \log_x(\sqrt{5})$
- C) $y = \log_{(\sqrt{s})} x$ D) $x = \log_{(\sqrt{s})} y$

- 10) Solve: $\log_{x} 27 = \frac{3}{4}$
- 11) Which of the following equations could be represented by the graph below?

- A) $y = -\log_2 x$ B) $y = 2^{-x}$
- D) $y = \log_2 x$
- 12) If the graphs of the equations $y = \log_3 x$ and y = 2 are drawn on the same set of axes, they will intersect where x is equal to
 - A) 1

B) 2

C) 3

D) 9

13)	Which of the	following	is the	inverse	relation	of u =	loa	5x?
,	************	, 0 , 10 , 17 , 19	15 01 10	17.70,30	FOIGEIOFE	U1 19 -	104	JA:

A)
$$y = \log_{5x} 10$$

$$B) \ \ y = \frac{1}{\log 5x}$$

C)
$$y = \frac{10^x}{5}$$

D)
$$y = 5x$$

14) Sketch the graph of
$$y = \log_3 x$$
 over the domain $\{\frac{1}{9} \le x \le 9\}$.

15) The expression log $(\frac{x^n}{\sqrt{y}})$ is equivalent to

A)
$$n \log x - \frac{1}{2} \log y$$

B)
$$\log (nx) - \log (\frac{1}{-y})$$

16) If $\log 5 = a$, then $\log 0.0005$ is

$$B) a - 4$$

$$C) 4 - a$$

$$D) 3 - a$$

17) If log M > 0, then

A)
$$0 < \frac{1}{M} \le 1$$

18) Which of the following statements below are true based on the definition of the logarithm $y = \log_b x$?

19) Which of the following statements are true?

$$l. \quad \log(3 \cdot 5) = 3 \log 5$$

11.
$$\log(3 \cdot 5) = \log 3 + \log 5$$

III.
$$log(3 \cdot 5) = log 3 \cdot log 5$$

$$IV. \log(3 \cdot 5) = \log 15$$

20) Which of the following statements are true?

1.
$$\log{(\frac{28}{7})} = \frac{\log{28}}{\log{7}}$$

//.
$$\log \left(\frac{28}{7}\right) = \log 28 - \log 7$$

///.
$$\log(\frac{28}{7}) = \log 4$$

IV.
$$\log{(\frac{28}{7})} = \frac{1}{7}\log{28}$$

A) // and ///, only

C) 1, 11, and 111, only

B) / and //, only

D) //, only

21) Simplify: log3 (log4 64)

A) 1

B) 2

C) 3

D) 4

22) If
$$log_{10}(ab) = 10$$
 and $log_{10} b = 5$, what is the value of a?

A)
$$\frac{1}{10}$$

D) 5

23) Solve for x:
$$\log_2(x-3) + \log_2(x+1) = 5$$

- A) {-7,5}
- B) 5, only
- C) 7, only
- D) {-5,7}

24) Solve for x:
$$\log(x - 3) + \log(x + 4) - \log x = \log 5$$

- A) {-2,6}
- B) 6, only
- C) $\{-6,2\}$
- D) {2,6}

- 25) Given that $\log_2 3 = 1.58$, and $\log_2 7 = 2.81$, evaluate $\log_2 147$ to the nearest hundredth.
 - A) 6.87

- B) 10.01
- C) 7.20

- D) 21.25
- 26) Given that $\log_2 3 = x$, $\log_2 5 = y$, and $\log_2 7 = z$, express $\log_2 \frac{\sqrt{35}}{\sqrt{2}}$ in terms of x, y, and z.
- A) $\frac{1}{4}(yz x)$ B) $2^{y} \cdot 2^{z} \div 2^{x}$ C) $\frac{1}{4}(y + z x)$ D) 4(y + z x)
- 27) Express $\log x$ in terms of $\log a$, $\log b$, and $\log c$: $x = a \cdot b$
- 28) Solve for x to the nearest tenth: $4^x = 28$
- 29) Given $\log_x A = 3$ and $\log_x B = 2$, evaluate:
 - (1) $\log_x \frac{A}{rt}$
 - (2) log, AB
- 30) Given $\log_x A = 3$ and $\log_x B = 2$, evaluate:
 - (1) $\log_X \frac{A}{R^2}$
 - (2) (log, AB)2

32) Express in simplest radical form:

b)
$$\frac{\sqrt[3]{4}}{\sqrt[6]{2}}$$

c)
$$\sqrt[4]{\chi^3} \cdot \sqrt[6]{\chi} \div \sqrt{\chi^5}$$

- 34) If log 3 = . 48 and log 4 = . 60, find a) log 4.5
 - b) log \$\sqrt{18}
- 35) Using a calculator, evaluate or solve to 2 dec. places. a) $\log_3(\frac{1}{5})$ b) .7 = 14