Probability Distributions

Before we get started, let's review some old vocab...

1. <u>Variable</u> – a characteristic or attribute that can assume different values.

Lesson 3 Part 1 Guided Notes

- Various letters of the alphabet, such as X, Y, Z, are used to represent variables.
- Since the variables in this chapter are associated with probability, they are called **random variables**.
- Random variable a variable whose values are determined by chance.
- 2. <u>Discrete variable</u> have finite number of possible values, or an infinite number of values that can be counted.
 - Whole numbers
- 3. <u>Continuous variable</u> can assme all values in the interval between any two given values.
 - Fractions, decimals.

Discrete Probability Distribution - consists of the values a random variable can assume and the corresponding probabilities of the values. The probabilities are determined theoretically or by observation.

Theoretical vs. Observational

Theoretical

• Represent graphically the probability distribution for the sample space for tossing three coins.

Observational

 The baseball teams playing in the World Series play until one team wins four times. This means there can be anywhere from 4-7 games. Find the probability P(X) for each X, construct a probability distribution, and draw a graph for the data.

Х	Number of games played			
4	8			
5	7			
6	9			
7	16			

Unit 2

Two Requirements for a Probability Distribution

• The sum of the probabilities of all the events in the sample space must equal 1; that is,

ΣP(X) = 1

• The probability of each event in the sample space must be between or equal to 0 and 1; that is,

 $0 \le P(X) \le 1$

Determine whether each is a probability distribution:

a)

b)

c)

d)

х	0	5	10	15	20
P(X)	1/5	1/5	1/5	1/5	1/5
	I				
х	1	2	3	4	
P(X)	1	1/8	1/16	9/16	
	I				
х	0	2	4	6	
P(X)	-1.0	1.5	0.3	0.2	
	I				
v	-	2	7		

X	2	3	7
P(X)	0.5	0.3	0.4

Mean, Variance, Standard Deviation, Expected Values

• We are familiar with finding mean, variance, and standard deviation. However, for probability distributions they are computed differently than they are for samples.

Mean

- How would you compute the mean of the number of dots that show on top when a die is rolled? You could roll it, say, 10 times, recording the number of dots, and finding the mean; however the answer would only approximate the true mean.
- To get an exact answer, we would have to roll the die an *infinite number of times*. Since this is impossible, we cannot use the old way to compute the mean.
- Suppose two coins are tossed repeatedly, and the number of heads that occurred is recorded. What will be the mean of the number of heads?
 - What is the sample space?
 - What is the probability for each outcome in the sample space?
 - Probability of one head?
 - Probability of two heads?
 - Probability of no heads?
 - Hence, on average, you would expect the number of heads to be...

So to find the mean for a probability distribution, you must multiply each possible outcome by its corresponding probability and find the sum of the products

• The mean of a random variable with a discrete probability distribution is

$$\mu = X_1 \times P(X_1) + X_2 \times P(X_2) + \dots + X_n \times P(X_n)$$

$$\mu = \Sigma X \times P(X)$$

where $X_1, X_2, ..., X_n$ are the outcomes and $P(X_1), P(X_2), ...P(X_n)$ are the corresponding probabilities.

**Note: $\mu = \Sigma X \times P(X)$ means to sum the products.

Variance and Standard Deviation

 To find the <u>variance</u> for the random variable of a probability distribution, subtract the theoretical mean from the each outcome and square the difference. Then multiply each difference by its corresponding probability and add the products.

$$\sigma^2 = \Sigma[(X - \mu)^2 \times P(X)]$$

However, this is tedious, so here's a shortcut...

• Find the **variance** of a probability distribution by multiplying the square of each outcome by its corresponding probability, summing the products, and subtracting the square of the theoretical mean.

$$\sigma^2 = \Sigma[X^2 \times P(X)] - \mu^2$$

****This is the shortcut. Use this one!****

• As always, the standard deviation is just the square root of the variance.

Examples

1. Find the mean, variance, and standard deviation of the number of dots that appear when a die is tossed.

2. A box contains 5 balls. Two are numbered 3, one is numbered 4, and two are numbered 5. The balls are mixed and one is selected at random. After a ball is selected, it is recorded and replaced. If the experiment is repeated many times, find the mean, variance, and standard deviation of the numbers on the balls.

3. A talk radio station has four telephone lines. If the host is unable to talk (i.e. during a commercial) or is talking to a person, the other called are placed on hold. When all lines are in use, others who are trying to call in get a busy signal. The probability that 0, 1, 2, 3, or 4 people will get through is shown in the distribution. Find the mean, variance, and standard deviation for the distribution.

Х	0	1	2	3	4
P(X)	0.18	0.34	0.23	0.21	0.04

Should the station have considered getting more phone lines installed?

Expected Value

• The expected value of a discrete random variable of a probability distribution is the theoretical average of the variable.

$$\mu = E(X) = \Sigma X \times P(X)$$

- The symbol E(X) is used for the expected value.
- The formula is the same as the theoretical mean.
- Expected value = Theoretical mean

Examples

- 1. One thousand tickets are sold at \$1 each for a color television valued at \$350. What is the expected value of the gain if you purchase one ticket?
- 2. One thousand tickets are sold at \$1 each for four prizes of \$100, \$50, \$25, and \$10. After each prize drawing, the winning ticket is then returned to the pool of tickets. What is the expected value if you purchase one ticket?
- 3. A financial adviser suggests that his client select one of two types of bonds in which to invest \$5,000. Bond X pays a return of 4% and has a default rate of 2%. Bond Y has a 2.5% return and a default rate of 1%. Find the expected rate of return and decide which bond would be a better investment. When the bond defaults, the investor loses all the investment.