Objective:

to use the order of operations to solve problems

Key Ideas

Order of Operations

An agreed upon set of rules so there is only one answer to a given problem.

- 1. Parentheses (and other grouping symbols)
- 3. multiplication & division (from left to right)
- 4 addition & subtraction (from left to right)

Example 1: Show and name the different types of grouping symbols.

fractions

brackets I labsolute value **Example 2:** What is the difference between 6^2 and $6 \cdot 2$?

Example 3: Simplify using the order of operations.

a)
$$4+8 \div 2+6 \cdot 3$$

$$6 \cdot (3+2) \div 15$$

c)
$$14+16\cdot 2^3-8 \div 2^2$$

d)
$$14 \div [3(8-2)-11]$$

Unit 1: Introductory Lesson 2 - The Order of Operations

e)
$$2[(12-3) \div 3 \cdot 2] - 7$$

 $2[9 \div 3 \cdot 2] - 7$
 $2[3 \cdot 2] - 7$
 $2(6) - 7$
 $12 - 7$
 5
g) $3 + 4[13 - 2(6 - 3)]$

$$3+4[13-2(3)]$$

 $3+4[13-2(3)]$
 $3+4[13-6]$
 $3+4(7)$
 $3+28$
 131

f)
$$2 + \left(\frac{6+30}{9-3}\right)$$
$$2 + \left(\frac{36}{6}\right)$$
$$2 + 6$$

h)
$$5(3^{2}+2)-2(6^{2}-5^{2})$$

 $5(9+2)-2(36-25)$
 $5(11)-2(11)$
 $55-22$

Example 4: Some urban planners specialize in planning entire new towns. These towns are designed for livability, with plenty of open space. The sketch below shows the dimensions for a new town called Panorama. Find Panorama's area.

By Subtraction: 4(6) - 2(3) 24 - 6 [18 km²]