2-6 Algebraic Proofs	Name
Geometry	Period
A two-column proof or organized in two- columns.	contains statements and reasons
One type of two-column proof is an is made up of a series of algebra statements. We	An algebraic proof can use properties of real numbers in algebraic proofs.
D (D 00 1/0

Property	Definition
Addition Property of Equality	
Subtraction Property of Equality	
Multiplication Property of Equality	
Division Property of Equality	
Transitive Property of Equality	
Substitution Property of Equality	
Distributive Property	

Example 1:

Given: 8x - 5 = 2x + 1Prove: x = 1

Proof:

Statements	Reasons
a. 8x - 5 = 2x + 1	a.
$\mathbf{b.}8x - 5 - 2x = 2x + 1 - 2x$	b.
с.	c. Substitution Property
d.	d. Addition Property
$e \cdot 6x = 6$	e.
$\mathbf{f.} \frac{6x}{6} = \frac{6}{6}$	f.
g	g

Example 2:

Given:
$$\frac{4x + 6}{2} = 9$$

Ducof

Proof:	
Statements	Reasons
a. $\frac{4x+6}{2} = 9$	a
b. $-\left(\frac{4x+6}{2}\right) = 2(9)$	b. Mult. Prop.
c. $4x + 6 = 18$	с
$\mathbf{d.} \ 4x + 6 - 6 = 18 - 6$	d
e. $4x = $	e. Substitution
f. $\frac{4x}{4} =$	f. Div. Prop.
g	g. Substitution

Example 3:

PROOF Write a two-column proof to verify each conjecture.

1. If
$$m\angle ABC + m\angle CBD = 90$$
, $m\angle ABC = 3x - 5$, and $m\angle CBD = \frac{x+1}{2}$, then $x = 27$.

