| Name: | Period: | |-------|---------| | | | # Lesson 13: Notes Example 1 A group of 6 hikers are preparing for a one-week trip. All of the group's supplies will be carried by the hikers in backpacks. The leader decided that it would be fair for each hiker to carry a backpack that is the same fraction of his weight as all the other hiker's. In this set-up, the heaviest hiker would carry the heaviest load. The table below shows the weight of each hiker and the weight of his/her backpack. Complete the table. Find the missing amounts of weight by applying the same ratio as the first 2 rows. | Hiker's Weight | Backpack
Weight | Total Weight
(lbs) | |----------------|--------------------|-----------------------| | 152 lb 4 oz | 14 lb 8 oz | | | 107 lb 10 oz | 10 lb 4 oz | | | 129 lb 15 oz | | | | 68 lb 4 oz | | | | | 8 lb 12 oz | | | | 10 lb | | | | | | | | | | | Name: | Period: | |-------|---------| |-------|---------| ## Example 2 When a business buys a fast food franchise, it is buying the recipes used at every restaurant with the same name. For example, all Pizzeria Specialty House Restaurants have different owners but they must all use the same recipes for their pizza, sauce, bread, etc. You are now working at your local Pizzeria Specialty House restaurant and listed below are the amounts of meat used on one meat-lovers pizza. $$\frac{1}{4}$$ cup of sausage $\frac{1}{3}$ cup of pepperoni $\frac{1}{6}$ cup of bacon $\frac{1}{8}$ cup of ham $\frac{1}{6}$ cup of beef What is the total amount of toppings used on a meat-lovers pizza? ______ cups The meat must be mixed using this ratio to ensure that customers will receive the same great tasting meat-lovers pizza from every Pizzeria Specialty House Restaurant nationwide. The table below shows 3 different orders for meat-lovers pizza on Superbowl Sunday. Using the amounts and total for one pizza given above, fill in every row and column of the table so the mixture tastes the same. | _ | Order 1 | Order 2 | Order 3 | |------------------|---------------|---------|----------------| | Sausage (cups) | 1 | | | | Pepperoni (cups) | | | 3 | | Bacon (cups) | | 1 | _ | | Ham (cups) | $\frac{1}{2}$ | | | | Beef (cups) | | | $1\frac{1}{8}$ | | TOTAL (cups) | | | | | Name: | Period: | |-------|---------| | | | # **Exercises** 1. The table below shows 6 different-sized pans of the same recipe for macaroni and cheese. If the recipe relating the ratio of ingredients stays the same, how might it be altered to account for the different sized pans? | Noodles | Cheese | Pan Size | |----------------|---------------|------------------| | (cups) | (cups) | (number of cups) | | | | 5 | | 3 | $\frac{3}{4}$ | | | | $\frac{1}{4}$ | | | $\frac{2}{3}$ | | | | $5\frac{1}{3}$ | | | | | | 5 8 | | Name: | Period: | |-------|---------| | | | ## **Lesson Summary:** To find missing quantities in a ratio table where a total is given, determine the unit rate from the ratio of two given quantities and use it to find the missing quantities in each equivalent ratio. #### **Practice Lesson #13** 1. Students in 6 classes, displayed below, ate the same ratio of cheese pizza slices to pepperoni pizza slices. Complete the following table, which represents the number of slices of pizza students in each class ate. | Slices of
Cheese Pizza | Slices of
Pepperoni
Pizza | Total Pizza | |---------------------------|---------------------------------|-----------------| | | | 7 | | 6 | 15 | | | 8 | | | | | $13\frac{3}{4}$ | | | $3\frac{1}{3}$ | | | | | | $2\frac{1}{10}$ | - 2. To make green paint, students mixed yellow paint with blue paint. The table below shows how many yellow and blue drops from a dropper several students used to make the same shade of green paint. - a. Complete the table. | Yellow (Y)
(ml) | Blue (B)
(ml) | Total | |--------------------|------------------|-------| | 3 ½ | 5 ¼ | | | | | 5 | | | 6 ¾ | | | 6 ½ | | | b. Write an equation to represent the relationship between the amount of yellow paint and blue paint. | Name: | Period: | |-------|---------| | | | 3. a. Complete the following table | Distance
Ran (miles) | Distance Biked
(miles) | Total Amount
of Exercise
(miles) | |-------------------------|---------------------------|--| | | | 6 | | $3\frac{1}{2}$ | 7 | | | | $5\frac{1}{2}$ | | | $2\frac{1}{8}$ | | | | | $3\frac{1}{3}$ | | b. What is the relationship between distances biked and distances ran? 4. The following table shows the number of cups of milk and flour that are needed to make biscuits. Complete the table. | Milk (cups) | Flour (cups) | Total (cups) | |-------------|--------------|--------------| | 7.5 | | | | | 10.5 | | | 12.5 | 15 | | | | | 11 |