If a system at equilibrium is subjected to a ______, the equilibrium is displaced in the direction that relieves the _____. - A stress is defined as any change which could affect the ______ of either or both the forward and/or reverse reaction. - When, because of an applied stress, the forward reaction is faster than the reverse reaction, the system is said to shift to the (right, left). As a result, the [products] will (increase, decrease) and the [reactants] will (increase, decrease). - When, because of an applied stress, the reverse reaction is faster than the forward reaction, the system is said to shift to the (right, left). As a result, the [products] will (increase, decrease) and the [reactants] will (increase, decrease). In simpler terms: If anything is added to a system at ______, the system will try to consume whatever was ______. If anything is removed from a system at equilibrium, the system will try to replace whatever was ______. So, the reaction is favored away from what is (added, removed) and toward what is (added, removed). 1. In the following reaction, will the $[H_2]$ increase or decrease when equilibrium is reestablished after these stresses are applied? $N_{2}(g) + 3 H_{2}(g) \rightleftharpoons$ 2 $NH_{3}(g) + 22 kJ$ $NH_{3}(g)$ is added _______ $N_{2}(g)$ is removed ______ pressure is increased ______ temperature is increased ______ 2. Note reaction: $2 \text{ NO } (g) + \text{H}_2 (g) \Longrightarrow \text{N}_2 \text{O} (g) + \text{H}_2 \text{O} (g) + 36 \text{ kJ}$ In which direction, left or right, will the equilibrium shift if the following changes are made? NO is added _____ the system is cooled _____ H2 is removed ____ pressure is increased _____ N2O is added _____ H2 is removed _____ | Worksheet: | Le | Chatelier's | Principle | |----------------|----|-------------|--------------| | 11 01 V211661. | | Charener 3 | I I IIICIPIE | $$CO_{2}(g) + H_{2}(g) + heat \Longrightarrow CO(g) + H_{2}O(g)$$ a. Is heat absorbed or released by the forward reaction? _____ b. In which direction will the equilibrium shift if these changes are made? CO is added _____ temperature is increased ______ CO2 is added _____ system is cooled ______ H2 is removed _____ pressure is increased ______ catalyst is added _____ 4. In this reaction: 2 NO $$(g)$$ + H₂ (g) \Longrightarrow N₂O (g) + H₂O (g) + heat What will happen to the $[H_2O]$ when equilibrium is reestablished after these stresses are applied? temperature is increased a catalyst is added pressure is decreased NO is added N₂O is removed 5. How would an increase in pressure affect the $[H_2]$ in the following reactions? 2 H₂ (g) + O₂ (g) ==== 2 H₂O (g)_____ $4 H_{2}(g) + Fe_{3}O_{4}(s) \implies 3 Fe(s) + 4 H_{2}O(l)$ $H_{2}(g) + Cl_{2}(g) \Longrightarrow 2 HCl(g)$