LAB ACTIVITY: Physical and Chemical Properties

Name	Date	Per
		

Purpose:

- 1) To observe physical and chemical properties.
- 2) To decide if an observed change is physical or chemical.

<u>Part 1</u>: The Physical Properties of Matter – Examine each substance carefully. Do not touch the substance. Leave the substance in the container. Record examined observations of physical appearance.

Part 1 Data Table:

SUBSTANCE	FORMULA	PHYSICAL STATE	COLOR	ODOR (Yes or No)	ELEMENT OR COMPOUND
Example: CARBON	С	Solid	Black	No	Element
ALUMINUM					
SULFUR					
IRON					
ZINC					
COBALT NITRATE					
NICKLE SULFATE					
SODIUM BICARBONATE					
SILICON DIOXIDE					
SODIUM CHLORIDE					
AMMONIUM HYDROXIDE					
WATER					
VINEGAR					
OXYGEN					

Part 2: Complete the following 6 experiments (complete in any order).

- 1) Place 5 drops of AgNO₃ in a well; add 5 drops of K₂CrO₄. Observe, record, and **clean** well.
- 2) Place 5 drops of NH₄OH in well, add 5 drops Co(NO₃)₂. Observe, record, and **clean** well.
- 3) Place 5 drops of NaHCO₃ in well; add 5 drops of vinegar. Observe, record, and **clean** well.
- 4) Light the wax candle. Watch the candle burn (C_{25} H₅₂). Observe very closely what is happening. Blow out the candle. There are multiple changes and observations to record.
- 5) Obtain a small piece of magnesium (Mg) ribbon. Pinch with a pair of tongs and ignite with the Bunsen burner. When it ignites, drop into the evaporating dish. DO NOT LOOK DIRECTLY at the burning Mg. Observe, record, and **clean** dish.
- 6) Remove the lid of the acetone (CH₃COCH₃). Dip a Q-tip into the acetone. Quickly put the lid back on, so it does not evaporate. Try to write your name on the table with the wet Q-tip. See how many letters you can write before they disappear.

Part 2 Data Table:

		Physical Sate (s, l, g, aq)	Color	Observations
	AgNO ₃			
Experiment 1	K₂CrO₄			_
	NH₄OH			
Experiment 2	Co(NO ₃) ₂			-
	NaHCO₃			
Experiment 3	Vinegar			_
Experiment 4	Light a Candle			
Experiment 5	Magnesium Ribbon			
Experiment 6	Acetone			

^{**}see attached page for post-lab / conclusion questions!

LAB ACTIVITY: Physical and Chemical Properties

Conclusion Questions:

1) Briefly differentiate between the following terms:

• Chemical Property and Physical Property:

	Chemical Change a	and a Physical Char	nge:
	or each of the experi		ermine whether a physical or chemical change occurred.
		Physical or Chemical Change?	Evidence
	Experiment 1		
	Experiment 2		
	Experiment 3		
	Experiment 4		
	Experiment 5		
	Experiment 6		
•	Vhich experiments we re they easier?	ere the easiest to de	etermine whether or not they were chemical changes? Why
	Choose one of the experiment was a physic		d use Claim, Evidence, Reasoning (CER) to explain why the ge (or both?!).
• C	laim: Was it a physic	al change, chemica	I change, or both?
• E	vidence: Provide dat	a to support your cla	aim. (what evidence did you SEE to support your claim?)
• R	easoning: Logical ex	planation of HOW y	our evidence supports your claim
(OV	'ER!)		

5) Indicate whether the following are physical or chemical changes.

Process:	Chemical or physical change?			
a) melting candle wax				
b) tearing Mg ribbon				
c) adding HCl to Mg				
d) tearing paper				
e) grinding CuSO ₄				
f) burning paper				
g) heating CuSO ₄				
h) dissolving NaCl				
i) mixing NaCl and sand				
6) Describe the difference between elements , comp from this activity!) of an element, that can also be parmixture.				
7) Can a compound be broken down to smaller com physical means? By chemical means?	iponents (i.e. elements or smaller compounds) by			
8) Describe the difference between a homogenous mixture and a heterogeneous mixture . Give an example of each.				
9) Discuss why physical properties are better to us	se to separate mixtures than chemical properties.			

10) Explain what type of change occurs (physical or chemical) when **INTRINSIC PROPERTIES** change.