LAB ACTIVITY: Physical and Chemical Properties

Name_	Date	Per
	<u> </u>	

Purpose:

- 1) To observe physical and chemical properties.
- 2) To decide if an observed change is physical or chemical.

<u>Part 1</u>: The Physical Properties of Matter – Examine each substance carefully. Do not touch the substance. Leave the substance in the container. Record examined observations of physical appearance.

Part 1 Data Table:

Part 1 Data Table	9:				
SUBSTANCE	FORMULA	PHYSICAL STATE	COLOR	ODOR (Yes or No)	ELEMENT OR COMPOUND
Example:					
CARBON	С	Solid	Black	No	Element
ALUMINUM					
SULFUR					
IRON					
ZINC					
COBALT					
NITRATE					
NICKLE SULFATE					
SODIUM BICARBONATE					
SILICON DIOXIDE					
SODIUM CHLORIDE					
AMMONIUM HYDROXIDE					
WATER					
VINEGAR					
OXYGEN					

Part 2: Complete the following 6 experiments (complete in any order).

- 1) Place 5 drops of AgNO₃ in a well; add 5 drops of K₂CrO₄. Observe, record, and clean well.
- 2) Place 5 drops of NH₄OH in well, add 5 drops Co(NO₃)₂. Observe, record, and clean well.
- 3) Place 5 drops of NaHCO₃ in well; add 5 drops of vinegar. Observe, record, and clean well.
- 4) Light the birthday candle. Watch the candle burn (C_{25} H₅₂). Observe very closely what is happening. Burn the candle long enough for three drops to fall into the cold water. Blow out the candle. There are multiple changes and observations to record.
- 5) Obtain a small piece of magnesium (Mg) ribbon. Pinch with a pair of tongs and ignite with the Bunsen burner. When it ignites, drop into the evaporating dish. DO NOT LOOK DIRECTLY at the burning Mg. Observe, record, and clean dish.
- 6) Remove the lid of the acetone (CH₃COCH₃). Use the dropper to put a few drops on the Q-tip. Quickly put the lid back on, so it does not evaporate. Try to write your name on the table with the wet Q-tip. See how many letters you can write before they disappear.

Part 2 Data Table:

		Physical Sate (s, l, g, aq)	Color	Observations
	AgNO₃			
Experiment 1	K₂CrO₄			-
	NH₄OH			
Experiment 2	Co(NO ₃) ₂			-
5	NaHCO₃			
Experiment 3	Vinegar			
	Light a Candle			
Experiment 4				
	Magnesium Ribbon			
Experiment 5				
	Acetone			
Experiment 6				

^{**}see attached page for post-lab / conclusion questions!

LAB ACTIVITY: Physical and Chemical Properties

Conclusion Questions:

1)	In '	vour	own	words,	differentiate	between	the	following	terms:

•	Chemical	Change	and a	Physical	Change:
---	----------	--------	-------	-----------------	---------

• Chemical Property and Physical Property:

2) For each of the experiments in Part 2, determine whether a physical or chemical change occurred. *Provide evidence to back up your claim.*

	Physical or Chemical Change	Evidence
Experiment 1		
Experiment 2		
Experiment 3		
Experiment 4		
Experiment 5		
Experiment 6		

3) Which experiments were the easiest to determine whether or not they were chemical changes? Why were they easier?

^{**}see questions on back.

4) Indicate whether the following are physical or chemical changes.

Process:	Chemical or physical change?
a) melting candle wax	
b) tearing Mg ribbon	
c) adding HCl to Mg	
d) tearing paper	
e) grinding CuSO ₄	
f) burning paper	
g) heating CuSO ₄	
h) dissolving NaCl	
i) mixing NaCl and sand	

5	Describe	the	difference	hetween	elements,	com	nounds	and	mixtures
J	Describe	uie	unierence	Detween	cicilicitis,	COIII	pourius,	anu	IIIIALUI 63

- 6) Can a compound be broken down to smaller components (i.e. elements or smaller compounds) by **physical** means? By **chemical** means?
- 7) Describe the difference between a **homogenous mixture** and a **heterogeneous mixture**. Give an example of each.
- 8) Discuss why physical properties are better to use to separate mixtures than chemical properties.