Isomerism

Isomers are molecules that have the same molecular formula but different structural formula 2 types:

1. Structural Isomers – atoms bonded in different orders

Isomerism - molecules with the same formula and different structures

2 Types

1) Structural Isomers

- -> atoms bonded in different orders.
- We will focus on alkanes (saturated hydrocarbons)

Structural Isomerism

Ex. C_4H_{10}

Cy Hio

How many structural isomers for C₅H₁₂

$$C - C - C - C - C$$

pentane

2-methylbutane

2,2-dimethy/propane

How many structural isomers for C₅H₁₂

$$c$$
 2-methylpentane
 $c-c-c-c$

Geometric Isomerism

• <u>2. Geometric Isomers</u> - atoms bonded in same order with different arrangement of atoms relative **to double bonded carbons**

Properties of Hydrocarbons

- 1) Non-polar substances 2) Insoluble in water
- 3) Less dense than water
- H) Very weak intermolecular forces
 - Van der Waals only (no polar bonds!)
 - 5) LOW melting points and low boiling points
 - 6) Boiling points increase as carbons are added.
 - 7) Undergo combustion reactions.

Combustion Reactions

hydrocarbon +
$$O_2 \longrightarrow CO_2 + H_2O$$

 $C_5H_{12} + O_2 \longrightarrow CO_2 + H_2O$
 $C_7H_{16} + O_2 \longrightarrow CO_2 + H_2O$
 $C_7H_{16} + O_2 \longrightarrow CO_2 + H_2O$

Balancing Tips balance C first
H second
O ALWAYS LAST.

Saturated Hydrocarbons: Alkanes

Alkanes: Saturated – no double or triple bonds General formula C_nH_{2n+2}

TABLE 19.3 | Names, Formulas, and Physical Properties of Straight-Chain Alkanes

Name	Molecular formula C"H _{2#+2}	Condensed structural formula	Boiling point (°C)	Melting point (°C)
Methane	CH ₄	CH ₄	-161	-183
Ethane	C_2H_6	CH ₃ CH ₃	-89	-172
Propane	C_3H_8	CH₃CH₂CH₃	-42	-187
Butane	C_4H_{10}	CH₂CH₂CH₂CH₃	-0.6	-135
Pentane	C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₃ CH ₃	36	-130
Hexane	C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	69	-95
Heptane	C_7H_{16}	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	98	-90
Octane	C_8H_{18}	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	125	-57
Nonane	C ₉ H ₂₀	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	151	-54
Decane	$C_{10}H_{22}$	CH ₂	174	-30