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Preface

This Minitab manual is to be used as an accompaniment to Introduction to the
Practice of Statistics, Fifth Edition, by David S. Moore and George P. McCabe,
and to the CD-ROM that accompanies this text. We abbreviate the textbook
title as IPS. It can be used with either Minitab Student Version 14, Minitab
Version 14 or Minitab Version 13 running under Windows. The text is based on
Minitab Student Version 14 and Minitab Version 14, but we have also indicated
in the manual wherever there are differences with Minitab Version 13, in the
way these versions work. The core of the manual is a discussion of the menu
commands while not neglecting to refer to the session commands, as these are
needed for certain problems. The material on session commands is always at
the end of each section and can be skipped if the reader will deÞnitely not be
using them. We have provided some Exercises for each chapter.

Minitab is a statistical software package that was designed especially for the
teaching of introductory statistics courses. It is our view that an easy-to-use
statistical software package is a vital and signiÞcant component of such a course.
This permits the student to focus on statistical concepts and thinking rather
than computations or the learning of a statistical package. The main aim of any
introductory statistics course should always be the �why� of statistics rather
than technical details that do little to stimulate the majority of students or, in
our opinion, do little to reinforce the key concepts. IPS succeeds admirably in
communicating the important basic foundations of statistical thinking, and it is
hoped that this manual serves as a useful adjunct to the text.

It is natural to ask why Minitab is advocated for the course. In the author�s
experience, ease of learning and use are the salient features of the package, with
obvious beneÞts to the student and to the instructor, who can relegate many
details to the software. While more sophisticated packages are necessary for
higher-level professional work, it is our experience that attempting to teach one
of these in a course forces too much attention on technical aspects. The time
students need to spend to learn Minitab is relatively small and it is a great
virtue. Further Minitab will serve as a perfectly adequate tool for many of the
statistical problems students will encounter in their undergraduate education.

vii



viii

This manual is divided into two parts. Part I is an introduction that pro-
vides the necessary details to start using Minitab and, in particular, how to use
worksheets. We recommend reading Part I before starting to use Minitab. Over-
all, the introductory Part I serves as a reference for most of the nonstatistical
commands in Minitab.
Part II follows the structure of the textbook. Each chapter is titled and

numbered as in IPS. The last two chapters are not in IPS but correspond to
optional material included on the CD-ROM. The Minitab commands relevant to
doing the problems in each IPS chapter are introduced and their use illustrated.
Each chapter concludes with a set of exercises, some of which are modiÞcations
of or related to problems in IPS and many of which are new and speciÞcally
designed to ensure that the relevant Minitab material has been understood.
There are also appendices dealing with some more advanced features of Minitab,
such as programming in Minitab and matrix algebra.
This manual does not attempt a complete coverage of Minitab. Rather, we

introduce and discuss those concepts in Minitab that we feel are most relevant
for a student studying introductory statistics with IPS. We do introduce some
concepts that are, strictly speaking, not necessary for solving the problems in
IPS where we feel that they were likely to prove useful in a large number of
data analysis problems encountered outside the classroom. While the manual�s
primary goal is to teach Minitab, generally we want to help develop strong data
analytic skills in conjunction with the text and the CD-ROM.
Thanks to W. H. Freeman and Company for their help and consideration.

Also thanks to Rosemary and Heather.
For further information on Minitab software, contact:

Minitab Inc.
3081 Enterprise Drive

State College, PA 16801 USA
ph: 814.328.3280
fax: 814.238.4383

email: Info@minitab.com
URL: http://www.minitab.com
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New Minitab commands discussed in this part

C
¯
alc I Cal

¯
culator C

¯
alc I C

¯
olumn Statistics

C
¯
alc I Make P

¯
atterned Data C

¯
alc I Ro

¯
w Statistics

E
¯
dit I C

¯
opy Cells E

¯
dit I C

¯
ut
¯
Cells

E
¯
dit I P

¯
aste Cells E

¯
dit I Select A

¯
ll Cells

E
¯
dit I U

¯
ndo Cut E

¯
dit I U

¯
ndo Paste

E
¯
ditor I Ena

¯
ble Commands Ed

¯
itor I I

¯
nsert Cells

Ed
¯
itor I Insert

¯
Columns Ed

¯
itor I Insert Rows

¯
Ed
¯
itor I O

¯
utput Editable

F
¯
ile I Ex

¯
it File I New

F
¯
ile I Other F

¯
iles I E

¯
xport Special Text F

¯
ile I Open W

¯
orksheet

F
¯
ile I Other F

¯
iles I I

¯
mport Special Text F

¯
ile I P

¯
rint Session Window

F
¯
ile I P

¯
rint Worksheet F

¯
ile I S

¯
ave Current Worksheet

F
¯
ile I S

¯
ave Current Worksheet As F

¯
ile I Sav

¯
e Session Window As

H
¯
elp
D
¯
ata I C

¯
opy Columns D

¯
ata I Di

¯
splay Data

D
¯
ata I E

¯
rase Variables D

¯
ata I R

¯
ank

D
¯
ata I S

¯
ort

W
¯
indow I Project Manager

1 Manual Overview and Conventions

Minitab is a software package for carrying out statistical, numerical, and graph-
ical calculations. This manual does not attempt to describe all the possible
implementations or the full extent of the package. We limit our discussion to
those features common to the most recent versions of Minitab running under the
Windows operating system. Version 14 refers to the latest version of Minitab at
the time of writing this manual, but we also make reference to Version 13 when
there are differences. This manual can be used with both versions.

In this manual, special statistical or Minitab concepts will be highlighted in
italic font. You should be sure that you understand these concepts.
Primarily, we will be discussing the menu commands that are available in

Minitab. Menu commands are accessed by clicking the left button of the mouse
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4 Minitab for Data Management

on items in lists. We use a special notation for menu commands. For example,

A I B I C

is to be interpreted as left click the command A on the menu bar, then in the
list that drops down, left click the command B, and, Þnally, left click C. The
menu commands will be denoted in ordinary font (the actual appearance may
vary slightly depending on the version of Windows you use).
There are also session commands and subcommands that are typed by the

user rather than using the mouse. These will be denoted in bold font. Any
commands that we actually type, and the output obtained, will be denoted
in typewriter font, as will the names of any Þles used by Minitab, variables,
constants, and worksheets.
We recommend that whenever feasible, the reader use Minitab to do the

problems in the text. While many problems can be done by hand, you will
save a considerable amount of time and avoid errors by learning to use Minitab
effectively. We also recommend that you try out the Minitab commands as you
read about them, as this will ensure full understanding.

2 Accessing and Exiting Minitab

The Þrst thing you should do is Þnd out how to access the Minitab package.
This information will come from your instructor, system personnel, or from
your software documentation if you have purchased Minitab to run on your own
computer.
In most cases, you will double click an icon, such as that shown in Display

I.1, that corresponds to the Minitab program. Alternatively, you can use the
Start button and click on Minitab in the Programs list. In this case, the program
opens with aMinitab window, such as the one shown in Display I.2. The Minitab
window is divided into two sub-windows with the upper window called the
Session window and the lower one called the Data window.
Left clicking the mouse anywhere on a particular window brings that window

to the foreground, i.e., makes it the active window, and the border at the top of
the window turns dark blue. For example, clicking in the Session window will
make that window active. Alternatively, you can use the command W

¯
indow I

S
¯
ession in the menu bar at the top of the Minitab window to make this window
active.

Display I.1: Minitab icon.
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Display I.2: Minitab window.

You may not see the

MTB >

prompt in the Session window, and for some things described in this manual it
is important that you do so. You can ensure that this prompt always appears
in your Session window by using T

¯
ools I O

¯
ptions I Session Window I Sub-

mitting Commands, clicking on the Enable radio button and then clicking on
OK. Without the MTB > prompt, you cannot type commands to be executed in
the Session window.

In the session window, Minitab commands are typed after the

MTB >

prompt and executed when you hit the Enter or Return key. For example, the
command exit takes you out of your Minitab session and returns you to the
system prompt or operating system. Otherwise, you can access commands using
the menu bar (Display I.3) that resides at the top of the Minitab window. For
example, you can access the exit command using F

¯
ile I Ex

¯
it. In many circum-

stances, using the menu commands to do your analyses is easy and convenient,
although there are certain circumstances where typing the session commands is
necessary. You can also exit by clicking on the × symbol in the upper right-hand
corner of the Minitab window. When you exit, you are prompted by Minitab in
a dialog window with something like the question, �Save changes to this Project
before closing?� You can safely answer no to this question unless you are in fact
using the Projects feature in Minitab as described in Appendix A. Later, we
will discuss how to save the contents of a Data window before exiting. This is
something you will commonly want to do.
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Display I.3: Menu bar.

Immediately below the menu bar in the Minitab window is the taskbar. The
taskbar consists of various icons that provide a shortcut method for carrying out
various operations by clicking on them. These operations can be identiÞed by
holding the cursor over each in turn, and it is a good idea to familiarize yourself
with these as they can save time. Of particular importance are the Cut Cells,
Copy Cells, and Paste Cells icons, which are available when a Data window is
active. When the operation associated with an icon is not available, the icon is
faded.
Minitab is an interactive program. By this we mean that you supply Minitab

with input data, or tell it where your input data is, and then Minitab responds
instantaneously to any commands you give telling it to do something with that
data. You are then ready to give another command. It is also possible to
run a collection of Minitab commands in a batch program, i.e., several Minitab
commands are executed sequentially before the output is returned to the user.
The batch version is useful when there is an extensive number of computations
to be carried out. You are referred to Appendix D for more discussion of the
batch version.

3 Files Used by Minitab

Minitab can accept input from a variety of Þles and write output to a variety of
Þles. Each Þle is distinguished by a Þle name and an extension that indicates
the type of Þle it is. For example, marks.mtw is the name of a Þle that would
be referred to as �marks� (note the single quotes around the Þle name) within
Minitab. The extension .mtw indicates that this is a Minitab worksheet. We
describe what a worksheet is in Section I.5. This Þle is stored somewhere on the
hard drive of a computer as a Þle called marks.mtw.
There are other Þles that you will want to access from outside Minitab,

perhaps to print them out on a printer. In such a case, you have to give the
relevant system print command together with the full path name of the Þle you
wish to print. As various implementations of Minitab differ as to where these
Þles are stored on the hard drive, you will have to determine this information
from your instructor or documentation or systems person. For example, in
Windows the full path name of the worksheet Þle marks.mtw could be

c : \Program Files\MINITAB 14\Data\marks.mtw
or something similar. This path name indicates that the Þle marks.mtw is stored
on the C hard drive in the directory called Program Files\MINITAB 14\Data.
We will discuss several different types of Þles in this manual.
It is generally best to name your Þles so that the Þle name reßects its con-

tents. For example, the Þle name marks may refer to a data set composed of
student marks in a number of courses.
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4 Getting Help

At times, you may want more information about a command or some other
aspect of Minitab than this manual provides, or you may wish to remind yourself
of some detail that you have partially forgotten. Minitab contains an online
manual that is very convenient. You can access this information directly by
clicking on H

¯
elp in the Menu bar and using the table of contents (via H

¯
elp

I H
¯
elp) or doing a search (via Search I Help

¯
) of the manual for a particular

concept.

From the

MTB >

prompt, you can use the help command for this purpose. Typing help followed
by the name of the command of interest and hitting Enter will cause Minitab
to produce relevant output. For example, asking for help on the command help
itself via the command

MTB >help help

will give you the table of contents of the online help manual. The help command
should be used to Þnd out about session commands.

5 The Worksheet

The basic structural component of Minitab is the worksheet . Basically, the
worksheet can be thought of as a big rectangular array, or matrix, of cells
organized into rows and columns as in the Data window of Display I.2. Each cell
holds one piece of data. This piece of data could be a number, i.e., numeric data,
or it could be a sequence of characters, such as a word or an arbitrary sequence
of letters and numbers, i.e., text data. Data often comes as numbers, such as
1.7, 2.3, . . . , but sometimes it comes in the form of a sequence of characters,
such as black, brown, red, etc. Typically, sequences of characters are used as
identiÞers in classiÞcations for some variable of interest, e.g., color, gender. A
piece of text data can be up to 80 characters in length in Minitab. Minitab also
allows for date data, which is data especially formatted to indicate a date, for
example, 3/4/97. We will not discuss date data.

If possible, try to avoid using text data with Minitab, i.e., make sure all
the values of a variable are numbers, as dealing with text data in Minitab is
more difficult. For example, denote colors by numbers rather than by names.
Still, there will be applications where data comes to you as text data, e.g., in
a computer Þle, and it is too extensive to convert to numeric data. So we will
discuss how to input text data into a Minitab worksheet, but we recommend
that in such cases you convert text data to numeric data, using the methods of
Section C.3 in Appendix C, once it has been input.

Display I.4 provides an example of a worksheet. Notice that the columns are
labeled C1, C2, etc., and the rows are labeled 1, 2, 3, etc. We will refer to the
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worksheet depicted in Display I.4 as the marks worksheet hereafter and will use
it throughout Part I to illustrate various Minitab commands and operations.
Data arises from the process of taking measurements of variables in some

real-world context. For example, in a population of students, suppose that we
are conducting a study of academic performance in a Statistics course. Specif-
ically, suppose that we want to examine the relationship between grades in
Statistics, grades in a Calculus course, grades in a Physics course, and gender.
So we collect the following information for each student in the study: student
number, grade in Statistics, grade in Calculus, grade in Physics, and gender.
Therefore, we have Þve variables�student number and the grades in the three
subjects are numeric variables, and gender is a text variable. Let us further
suppose that there are ten students in the study.
Display I.4 gives a possible outcome from collecting the data in such a study.

Column C1 contains the student number (note that this is a categorical vari-
able even though it is a number). The student number primarily serves as an
identiÞer so that we can check that the data has been entered correctly. This is
something you should always do as a Þrst step in your analysis. Columns C2�
C4 contain the student grades in their Statistics, Calculus, and Physics courses
and column C5 contains the gender data. Notice that a column contains the
values collected for a single variable, and a row contains the values of all the
variables for a single student. Sometimes, a row is referred to as an observation
or case. Observe that the data for this study occupies a 10× 5 subtable of the
full worksheet. All of the other blank entries of the worksheet can be ignored,
as they are undeÞned.
There will be limitations on the number of columns and rows you can have in

your worksheet, and this depends on the particular implementation of Minitab
you are using. So if you plan to use Minitab for a large problem, you should check
with the system person or further documentation to see what these limitations
are. For example, in Minitab Student Version 14 there is a limitation of 10,000
cells. So there can be one variable with 10,000 values in it, or 50 variables with
200 values each, etc.
Associated with a worksheet is a table of constants. Typically, these are

numbers that you want to use in some arithmetical operation applied to every
value in a column. For example, you may have recorded heights of people in
inches and want to convert these to heights in centimeters. So you must multiply
every height by the value 2.54. The Minitab constants are labeled K1, K2, etc.
To continue with the above problem, we might assign the value 2.54 to K1. In
Section I.7.4, we show how to make such an assignment, and in Section I.10.1
we show how to multiply every entry in a column by this value.
There is an additional structure in Minitab beyond the worksheet called

the project . A project can have multiple worksheets associated with it. Also,
a project can have associated with it various graphs and records of the com-
mands you have typed and the output obtained while working on the worksheets.
Projects, which are discussed in Appendix A, can be saved and retrieved for later
work.
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Display I.4: The marks worksheet.

6 Minitab Commands

We will now begin to introduce various Minitab commands to get data into a
worksheet, edit a worksheet, perform various operations on the elements of a
worksheet, and save and access a saved worksheet. Before we do, however, it is
useful to know something about the basic structure of all Minitab commands.
Associated with every command is of course its name, as in F

¯
ile I Ex

¯
it and

H
¯
elp. Most commands also take arguments, and these arguments are column
names, constants, and sometimes Þle names.
Commands can be accessed by making use of the F

¯
ile, E

¯
dit, D

¯
ata (M

¯
anip

in Version 13), C
¯
alc, S

¯
tat, G

¯
raph, and E

¯
ditor entries in the menu bar. Clicking

any of these brings up a list of commands that you can use to operate on your
worksheet. The lists that appear may depend on which window is active, e.g.,
either a Data window or the Session window. Unless otherwise speciÞed, we
will always assume that the Session window is active when discussing menu
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commands. If a command name in a list is faded, then it is not available.
Typically, using a command from the menu bar requires the use of a dialog

box or dialog window that opens when you click on a command in the list.
These are used to provide the arguments and subcommands to the command
and specify where the output is to go. Dialog boxes have various boxes that
must be Þlled in to correctly execute a command. Clicking in a box that needs
to be Þlled in typically causes a variable list of all items in the active worksheet
that can be placed in that box to appear in the left-most box. Double clicking
on items in the variable list places them in the box, or, alternatively, you can
type them in directly. When you have Þlled in the dialog box and clicked OK,
the command is printed in the Session window and executed. Any output is
also printed in the Session window. Dialog boxes have a Help button that can
be used to learn how to make the entries.
For example, suppose that we want to calculate the mean of column C2

in the worksheet marks. Then the command C
¯
alc I C

¯
olumn Statistics brings

up the dialog box shown in Display I.5. Notice that the radio button Sum is
Þlled in. Clicking the radio button labeled Mean results in this button being
Þlled in and the Sum button becoming empty. Whichever button is Þlled in will
result in that statistic being calculated for the relevant columns when we Þnally
implement the command by clicking OK.
Currently, there are no columns selected, but clicking in the Input variable

box brings up a list of possible columns in the display window on the left. The
results of these operations are shown in Display I.6. We double click on C2 in
the variable list, which places this entry in the Input variable box as shown in
Display I.7. Alternatively, we could have simply typed this entry into the box.
After clicking the OK button, we obtain the output

Mean of C2 = 69.900

in the Session window.

Display I.5: Initial view of the dialog box for Column Statistics.
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Display I.6: View of the dialog box for Column Statistics after selecting Mean and

bringing up the variable list.

Display I.7: Final view of the dialog box for Column Statistics.

Quite often, it is faster and more convenient to simply type your commands
directly into the Session window. Sometimes, it is necessary to use the Session
window approach. So we now describe the use of commands in the Session
window.
The basic structure of such a command with n arguments is

command name E1,E2,...,En

where Ei is the ith argument. Alternatively, we can type

command name E1 E2 ... En

if we don�t want to type commas. Conveniently, if the arguments E1,E2,...,En
are consecutive columns in the worksheet, we have the following short-form

command name E1-En

which saves even more typing and accordingly decreases our chance of making a
typing mistake. If you are going to type a long list of arguments and you don�t
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want them all on the same line, then you can type the continuation symbol &
where you want to break the line and then hit Enter. Minitab responds with
the prompt

CONT>

and you continue to type argument names. The command is executed when you
hit Enter after an argument name without a continuation character following
it.
Many commands can, in addition, be supplied with various subcommands

that alter the behavior of the command. The structure for commands with
subcommands is

command name E1 ... En1 ;
subcommand name En1+1 ... En2 ;

...
subcommand name Enk−1+1 ... Enk .

Notice that when there are subcommands each line ends with a semicolon until
the last subcommand, which ends with a period. Also, subcommands may have
arguments. When Minitab encounters a line ending in a semicolon it expects a
subcommand on the next line and changes the prompt to

SUBC >

until it encounters a period, whereupon it executes the command. If while
typing in one of your subcommands you suddenly decide that you would rather
not execute the subcommand�perhaps you realize something was wrong on a
previous line�then type abort after the SUBC > prompt and hit Enter. As a
further convenience, it is worth noting that you need to only type in the Þrst
four letters of any Minitab command or subcommand.
For example, to calculate the mean of column C2 in the worksheet marks,

we can use the mean command in the Session window, as in

MTB > mean c2

and we obtain the same output in the Session window as before.
There are additional ways in which you can input commands to Minitab.

Instead of typing the commands directly into the Session window, you can also
type these directly into the Command Line Editor, which is available via E

¯
dit

I Com
¯
mand Line Editor. Multiple commands can then be typed directly into a

box that pops up and executed when the Submit Commands button is clicked.
Output appears in the Session window. Also, many commands are available on
a toolbar that lies just below the menu bar at the top of the Minitab window.
There is a different toolbar depending upon which window is active. We give a
brief discussion of some of the features available in the toolbar in later sections.

7 Entering Data into a Worksheet

There are various methods for entering data into a worksheet. The simplest
approach is to use the Data window to enter data directly into the worksheet by
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clicking your mouse in a cell and then typing the corresponding data entry and
hitting Enter. Remember that you can make a Data window active by clicking
anywhere in the window or by using W

¯
indow in the menu bar. If you type any

character that is not a number, Minitab automatically identiÞes the column
containing that cell as a text variable and indicates that by appending T to
the column name, e.g., C5-T in Display I.4. You do not need to append the T
when referring to the column. Also, there is a data direction arrow in the upper
left corner of the data window that indicates the direction the cursor moves
after you hit Enter. Clicking on it alternates between row-wise and column-
wise data entry. Certainly, this is an easy way to enter data when it is suitable.
Remember, columns are variables and rows are observations! Also, you can have
multiple data windows open and move data between them. Use the command
F
¯
ile I N

¯
ew to open a new worksheet.

7.1 Importing Data

If your data is in an external Þle (not an .mtw Þle), you will need to use F
¯
ile

I Other F
¯
iles I I

¯
mport Special Text to get the data into your worksheet. For

example, suppose in the Þle marks.txt we have the following data recorded,
just as it appears.

12389 81 85 78
97658 75 72 62
53546 77 83 81
55542 63 42 55
11223 71 82 67
77788 87 56 *
44567 23 45 35
32156 67 72 81
33456 81 77 88
67945 74 91 92

Each row corresponds to an observation, with the student number being the Þrst
entry, followed by the marks in the student�s Statistics, Calculus, and Physics
courses. These entries are separated by blanks.
Notice the * in the sixth row of this data Þle. In Minitab, a * signiÞes a

missing numeric value, i.e., a data value that for some reason is not available.
Alternatively, we could have just left this entry blank. A missing text value
is simply denoted by a blank. Special attention should be paid to missing
values. In general, Minitab statistical analyses ignore any cases (observations)
that contain missing data except that the output of the command will tell you
how many cases were ignored because of missing data. It is important to pay
attention to this information. If your data is riddled with a large number of
missing values, your analysis may be based on very few observations�even if
you have a large data set!
When data in such a Þle is blank-delimited like this it is very easy to read
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in. After the command F
¯
ile I Other F

¯
iles I I

¯
mport Special Text, we see the

dialog box shown in Display I.8 less C1�C4 in the Store data in column(s): box.
We typed C1-C4 into this window to indicate that we want the data read in to
be stored in these columns. Note that it doesn�t matter if we use lower or upper
case for the column names, as Minitab is not case sensitive. After clicking OK,
we see the dialog box depicted in Display I.9, which we use to indicate from
which Þle we want to read the data. Note that if your data is in .txt Þles
rather than .dat Þles, you will have to indicate that you want to see these in
the Files of type box by selecting Text Files (and then all Þles with this suffix
in the Data directory are listed) or perhaps All Files. Clicking on marks.txt
results in the data being read into the worksheet.

Display I.8: Dialog box for importing data from external Þle.

Display I.9: Dialog box for selecting Þle from which data is to be read in.
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Of course, this data set does not contain the text variable denoting the
student�s gender. Suppose that the Þle marksgend.txt contains the following
data exactly as typed.

12389 81 85 78 m
97658 75 72 62 m
53546 77 83 81 f
55542 63 42 55 m
11223 71 82 67 f
77788 87 56 * f
44567 23 45 35 m
32156 67 72 81 m
33456 81 77 88 f
67945 74 91 92 f

As this Þle contains text data in the Þfth column, we must tell Minitab how
the data is formatted in the Þle. To access this feature, we click on the Format
button in the dialog box shown in Display I.8. This brings up the dialog box
shown in Display I.10. To indicate that we will specify the format, we click the
radio button User-speciÞed format and Þll the particular format into the box
as shown in Display I.11. The format statement says that we are going to read
in the data according to the following rule: a numeric variable occupying Þve
spaces and with no decimals, followed by a space, a numeric variable occupying
two spaces with no decimals, a space, a numeric variable occupying two spaces
with no decimals, a space, a numeric variable occupying two spaces with no
decimals, a space, and a text variable occupying one space. This rule must be
rigorously adhered to or errors will occur.

Display I.10: Initial dialog box for formatted input.
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Display I.11: Dialog box for formatted input with the format Þlled in.

So the rules you need to remember, if you use formatted input, are that ak
indicates a text variable occupying k spaces, kx indicates k spaces, and fk.l
indicates a numeric variable occupying k spaces, of which l are to the right
of the decimal point. Note if a data value does not Þll up the full number of
spaces allotted to it in the format statement, it must be right justiÞed in its
Þeld. Also, if a decimal point is included in the number, this occupies one of the
spaces allocated to the variable and similarly for a minus or plus sign. There are
many other features to formatted input that we will not discuss here. Use the
Help button in the dialog box for information on these features. Finally, clicking
on the OK button reads this data into a worksheet as depicted in Display I.4.
Typically, we try to avoid the use of formatted input because it is somewhat
cumbersome, but sometimes we must use it.
In the session environment, the read command is available for inputting

data into a worksheet with capabilities similar to what we have described. For
example, the commands

MTB >read c1-c4
DATA>12389 81 85 78
DATA>97658 75 72 62
DATA>53546 77 83 81
DATA>55542 63 42 55
DATA>11223 71 82 67
DATA>77788 87 56 *
DATA>44567 23 45 35
DATA>32156 67 72 81
DATA>33456 81 77 88
DATA>67945 74 91 92
DATA>end
10 rows read.
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place the Þrst four columns into the marks worksheet. After typing read c1-c4
after the MTB > prompt and hitting Enter, Minitab responds with the DATA>
prompt, and we type each row of the worksheet in as shown. To indicate that
there is no more data, we type end and hit Enter. Similarly, we can enter text
data in this way but can�t combine the two unless we use a format subcommand.
We refer the reader to help for more description of how this command works.

7.2 Patterned Data

Often, we want to input patterned data into a worksheet. By this we mean
that the values of a variable follow some determined rule. We use the command
C
¯
alc I Make P

¯
atterned Data for this. For example, implementing this com-

mand with the entries in the dialog box depicted in Display I.12 (for a S
¯
imple

Set of Numbers) adds a column C6 to the marks worksheet with the sequence
0, 0.5, 1.0, 1.5, 2.0 repeated twice. For this we entered 0 in the From Þrst value
box, a 2 in the To last value box, a .5 in the In steps of box, a 1 in the List each
value box, and a 2 in the List the whole sequence box. Basically, we can start
a sequence at any number m and successively increment this with any number
d > 0 until the next addition would exceed the last value n prescribed, repeat
each element l times, and Þnally repeat the whole sequence k times.

Display I.12: Dialog box for making patterned data with some entries Þlled in.

There is some shorthand associated with patterned data that can be very
convenient. For example, typing m : n in a Minitab command is equivalent to
typing the values m,m+1, . . . , n when m < n and m,m− 1, ..., n when m > n,
and m when m = n. The expression m : n/d, where d > 0, expands to a list as
above but with the increment of d or −d, whichever is relevant, replacing 1 or
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−1. If m < n, then d is added to m until the next addition would exceed n, and
if m > n, then d is subtracted from m until the next subtraction would be lower
than n. The expression k(m : n/d) repeats m : n/d for k times, while (m : n/d)l
repeats each element in m : n/d for l times. The expression k(m : n/d)l repeats
(m : n/d)l for k times.

The set command is available in the Session window to input patterned
data. For example, suppose we want C6 to contain the ten entries 1, 2, 3, 4, 5,
5, 4, 3, 2, 1. The command

MTB >set c6

DATA>1:5

DATA>5:1

DATA>end

does this. Also, we can add elements in parentheses. For example, the command

MTB >set c6

DATA>(1:2/.5 4:3/.2)

DATA>end

creates the column with entries 1.0, 1.5, 2.0, 4.0, 3.8, 3.6, 3.4, 3.2, 3.0. The
multiplicative factors k and l can also be used in such a context. Obviously,
there is a great deal of scope for entering patterned data with set. The general
syntax of the set command is

set E1

where E1 is a column.

7.3 Printing Data in the Session Window

Once we have entered the data into the worksheet, we should always check
that we have made the entries correctly. Typically, this means printing out
the worksheet and checking the entries. The command Da

¯
ta I Di

¯
splay Data

(M
¯
anip I Di

¯
splay Data in Version 13) will print the data you ask for in the

Session window. For example, with the worksheet marks the dialog box pictured
in Display I.13 causes the contents of this worksheet to be printed when we click
on OK. We selected which variables to print by Þrst clicking in the Columns,
constants, and matrices to display box, and then double clicking on the variables
in the variable list on the left.

The print command is available in the Session window and is often conve-
nient to use. The general syntax for the print command is

print E1 ... Em

where E1, ..., Em are columns and constants. This prints the contents of these
columns and constants in the Session window.
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Display I.13: Dialog box for printing worksheet in the Session window.

7.4 Assigning Constants

To enter constants, we use the C
¯
alc I Cal

¯
culator command and Þll in the dialog

box appropriately. For example, suppose we want to assign the values k1=.5,
k2=.25, and k3=.25 to the constants k1, k2, and k3. These could serve as
weights to calculate a weighted average of the marks in the marks worksheet.
Then the C

¯
alc I Cal

¯
culator command leads to the dialog box displayed in

Display I.14, where we have typed k1 into the Store result in variable box and
the value .5 into the Expression box. Clicking on OK then makes the assignment.
Note that we can assign text values to constants by enclosing the text in double
quotes. We will talk about further features of Calculator later in this manual.
Similarly, we assign values to k2 and k3.

Display I.14: Filled in dialog box for assigning the constant k1 the value .5.
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The let command is available in the Session window and is quite convenient.
The following commands make this assignment and then we check, using the
print command, that we have entered the constants correctly.

MTB >let k1=.5
MTB >let k2=.25
MTB >let k3=.25
MTB >print k1-k3
K1 0.500000
K2 0.250000
K3 0.250000

Also, we can assign constants text values. For example,

MTB >let k4=�result�

assigns K4 the value result. Note the use of double quotes.

7.5 Naming Variables and Constants

It often makes sense to give the columns and constants names rather than just
referring to them as C1, C2, ..., K1, K2, etc. This is especially true when there
are many variables and constants, as it would be easy to slip and use the wrong
column in an analysis and then wind up making a mistake. To assign a name to
a variable, simply go to the blank cell at the top of the column in the worksheet
corresponding to the variable and type in an appropriate name. For example,
we have used studid, statistics, calculus, physics, and gender for the
names of C1, C2, C3, C4, and C5, respectively, and these names appear in
Display I.15.

Display I.15: Worksheet marks with named variables.
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In the Session window, the name command is available for naming variables
and constants. For example, the commands

MTB >name c1 �studid� c2 �stats� c3 �calculus� &
CONT>c4 �physics� c5 �gender� &
CONT>k1 �weight1� k2 �weight2� k3 �weight3�

give the names studid to C1, stats to C2, calculus to C3, physics to C4,
gender to C5, weight1 to K1, weight2 to K2, and weight3 to K3. Notice that
we have made use of the continuation character & for convenience in typing in
the full input to name. When using the variables as arguments, just enclose
the names in single quotes. For example,

MTB >print �studid� �calculus�

prints out the contents of these variables in the Session window.
Variable and constant names can be at most 31 characters in length, cannot

include the characters #, �, and cannot start with a leading blank or *. Recall
that Minitab is not case sensitive, so it does not matter if we use lower or upper
case letters when specifying the names.

7.6 Information about a Worksheet

We can get information on the data we have entered into the worksheet by using
the info command in the Session window. For example, we get the following
results based on what we have entered into the marks worksheet so far.

MTB >info
Column Name Count Missing

A C1 studid 10 0
C2 stats 10 0
C3 calculus 10 0
C4 physics 10 1

A C5 gender 10 0
Constant Name Value
K1 weight1 0.500000
K2 weight2 0.250000
K3 weight3 0.250000

Notice that the info command tells us how many missing values there are and
in what columns they occur and also the values of the constants.
This information can also be accessed directly from the Project Manager

window via W
¯
indow I Project Manager

7.7 Editing a Worksheet

It often happens that after data entry we notice that we have made some mis-
takes or we obtain some additional information, such as more observations. So
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far, the only way we could change any entries in the worksheet or add some
rows is to reenter the whole worksheet!
Editing the worksheet is straightforward because we simply change any cells

by retyping their entries and hitting the Enter key. We can add rows and
columns at the end of the worksheet by simply typing new data entries in the
relevant cells. To insert a row before a particular row, simply click on any entry
in that row and then the menu command Ed

¯
itor I Insert Rows

¯
. Fill in the

blank entries in the new row. To insert a column before a particular column,
simply click on any entry in that column and then the menu command Ed

¯
itor

I Insert
¯
Columns. Fill in the blank entries in the new column. To insert a

cell before a particular cell, simply click on any entry in that cell and the menu
command Ed

¯
itor I I

¯
nsert Cells. Fill in the blank entry in the new cell that

appears in place of the original with all other cells in that column � and only
that column�pushed down.
If you wish to clear a number of cells in a block, click in the cell at the

start of the block, and holding the mouse key down, drag the cursor through
the block so that it is highlighted in black. Click on the Cut Cells icon on the
Minitab taskbar, and all the entries will be deleted. Cells immediately below the
block move up to Þll in the vacated places. A convenient method for clearing
all the data entries in a worksheet, with the relevant Data window active, is
to use the command E

¯
dit I Select A

¯
ll Cells, which causes all the cells to be

highlighted, and click on the Cut Cells icon. Always save the contents of the
current worksheet before doing this unless you are absolutely sure you don�t
need the data again. We discuss how to save the contents of a worksheet in
Section I.8.
To copy a block of cells, click in the cell at the start of the block and, holding

the mouse key down, drag the cursor through the block so that it is highlighted
in black, but, instead of hitting the backspace key, use the command E

¯
dit I

C
¯
opy Cells or click on the Copy Cells icon on the Minitab taskbar. The block
of cells is now copied to your clipboard. If you not only want to copy a block of
cells to your clipboard but remove them from the worksheet, use the command
E
¯
dit I Cut

¯
Cells or the Cut Cells icon on the Minitab taskbar instead. Note

that any cells below the removed block will move up to replace these entries.
To paste the block of cells into the worksheet, click on the cell before which you
want the block to appear or that is at the start of the block of cells you wish to
replace and issue the command E

¯
dit I P

¯
aste Cells, or use the Paste Cells icon

on the Minitab taskbar. A dialog box appears as in Display I.16, where you are
prompted as to what you want to do with the copied block of cells. If you feel
that a cutting or pasting was in error, you can undo this operation by using
E
¯
dit I U

¯
ndo Cut or E

¯
dit I U

¯
ndo Paste, respectively, or use the Undo icon on

the Minitab taskbar.
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Display I.16: Dialog box that determines how a block of copied cells is used.

An alternative approach is available for copying operations using Da
¯
ta I

C
¯
opy (or M

¯
anip I C

¯
opy Columns in Version 13) and Þlling in the dialog box

appropriately. We refer the reader to the online manual for more description of
these features.
One can also delete selected rows from speciÞed columns using Da

¯
taID

¯
elete

Rows (or M
¯
anip I D

¯
elete Rows in Version 13) and Þlling in the dialog box

appropriately. Notice, however, that whenever we delete a cell, the contents
of the cells beneath the deleted one in that column simply move up to Þll the
cell. The cell entry does not become missing; rather, cells at the bottom of the
column become undeÞned! If you delete an entire row, this is not a problem
because the rows below just shift up. For example, if we delete the third row,
then in the new worksheet, after the deletion, the third row is now occupied by
what was formerly the fourth row. Therefore, you should be careful, when you
are not deleting whole rows, to ensure that you get the result you intended.
Note that if you should delete all the entries from a column, this variable is

still in the worksheet, but it is empty now. If you wish to delete a variable and
all its entries, this can be accomplished from Da

¯
ta I E

¯
rase Variables (M

¯
anip I

E
¯
rase Variables in Version 13) and Þlling in the dialog box appropriately. This
is a good idea if you have a lot of variables and no longer need some of them.
There are various commands in the Session window available for carrying

out these editing operations. For example, the restart command in the Session
window can be used to remove all entries from a worksheet. The let command
allows you to replace individual entries. For example,

MTB > let c2(2)=3

assigns the value 3 to the second entry in the column C2. The copy command
can be used to copy a block of cells from one place to another. The insert
command allows you to insert rows or observations anywhere in the worksheet.
The delete command allows you to delete rows. The erase command is avail-
able for the deletion of columns or variables from the worksheet. As it is more



24 Minitab for Data Management

convenient to edit a worksheet by directly working on the worksheet and using
the menu commands, we do not discuss these commands further here.

8 Saving, Retrieving, and Printing

Quite often, you will want to save the results of all your work in creating a work-
sheet. If you exit Minitab before you save your work, you will have to reenter
everything. So we recommend that you always save. To use the commands of
this section, make sure that the Worksheet window of the worksheet in question
is active.
Use F

¯
ile I Save C

¯
urrent Worksheet to save the worksheet with its current

name, or the default name if it doesn�t have one. If you want to provide a name
or store the worksheet in a new location, then use F

¯
ileI Save

¯
CurrentWorksheet

As and Þll in the dialog box depicted in Display I.17 appropriately. The Save
in box at the top contains the name of the folder in which the worksheet will be
saved once you click on the Save button. Here the folder is called files, and
you can navigate to a new folder using the Up One Level button immediately to
the right of this box. The next button allows you to create a subfolder within
the current folder. The box immediately below contains a list of all Þles of type
.mtw in the current folder. You can select the type of Þle to display by clicking
on the arrow in the Save as type box, which we have done here, and click on
the type of Þle you want to display that appears in the drop-down list. There
are several possibilities including saving the worksheet in other formats, such
as Excel. Currently, there is one .mtw Þle in the folder files and it is called
marks.mtw. If you want to save the worksheet with a particular name, type this
name in the File name box and click on the Save button.

Display I.17: Dialog box for saving a worksheet.
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To retrieve a worksheet, use F
¯
ile I Open W

¯
orksheet and Þll in the dialog

box as depicted in Display I.18 appropriately. The various windows and buttons
in this dialog box work as described for the F

¯
ile I S

¯
ave Current Worksheet As

command, with the exception that we now type the name of the Þle we want to
open in the File name box and click on the Open button.
To print a worksheet, use the command F

¯
ile I P

¯
rint Worksheet. The dialog

box that subsequently pops up allows you to control the output in a number of
ways.
It may be that you would prefer to write out the contents of a worksheet to

an external Þle that can be edited by an editor or perhaps used by some other
program. This will not be the case if we save the worksheet as an .mtw Þle as
only Minitab can read these. To do this, use the command F

¯
ile I Other F

¯
iles

I E
¯
xport Special Text, Þlling in the dialog box and specifying the destination

Þle when prompted. For example, if we want to save the contents of the marks
worksheet, this command results in the dialog box of Display I.19 appearing.
We have entered all Þve columns into the Columns to export box and have not
speciÞed a format, so the columns will be stored in the Þle with single blanks
separating the columns. Clicking the OK button results in the dialog box of
Display I.20 appearing. Here, we have typed in the name marks.dat to hold the
contents. Note that while we have chosen a .dat type Þle, we also could have
chosen a .txt type Þle. Clicking on the Save button results in a Þle marks.dat
being created in the folder data with contents as in Display I.21.

Display I.18: Dialog box for retrieving a worksheet.
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Display I.19: Dialog box for saving the contents of a worksheet to an external

(non-Minitab) Þle.

Display I.20: Dialog box for selecting external Þle to hold contents of a worksheet.

Display I.21: Contents of the Þle marks.dat.
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In the Session window, the commands save and retrieve are available for
saving and retrieving a worksheet in the .mtw format and the command write
is available for saving a worksheet in an external Þle. We refer the reader to
help for a description of how these commands work.

9 Mathematical Operations

When carrying out a data analysis, a statistician is often called upon to trans-
form the data in some way. This may involve applying some simple transforma-
tion to a variable to create a new variable�e.g., take the natural logarithm of
every grade in the marks worksheet�to combining several variables together to
form a new variable�e.g., calculate the average grade for each student in the
marks worksheet. In this section, we present some of the ways of doing this.

9.1 Arithmetical Operations

Simple arithmetic can be carried out on the columns of a worksheet using the
arithmetical operations of addition +, subtraction −, multiplication *, division
/, and exponentiation ** via the C

¯
alc I Cal

¯
culator command. When columns

are added together, subtracted one from the other, multiplied together, divided
one by the other (make sure there are no zeros in the denominator column),
or one column exponentiates another, these operations are always performed
component-wise. For example, C1*C2 means that the ith entry of C1 is multi-
plied by the ith entry of C2, etc. Also, make sure that the columns on which you
are going to perform these operations correspond to numeric variables! While
these operations have the order of precedence **, */, +−, parentheses ( ) can
and should be used to ensure an unambiguous result. For example, suppose in
the marks worksheet we want to create a new variable by taking the average
of the Statistics and Calculus grades and then subtracting this average from
the Physics grade and placing the result in C6. Filling in the dialog box, corre-
sponding to C

¯
alc I Cal

¯
culator, as shown in Display I.22 accomplishes this when

we click on the OK button. Note that we can either type the relevant expres-
sion into the Expression box or use the buttons and double click on the relevant
columns. Further, we type the column where we wish to store the results of our
calculation in the Store result in variable box. These operations are done on
the corresponding entries in each column; corresponding entries in the columns
are operated on according to the formula we have speciÞed, and a new column
of the same length containing all the outcomes is created. Note that the sixth
entry in C6 will be *�missing�because this entry was missing for C4.

These kinds of operations can also be carried out directly in the Session
window using the let command, and in some ways this is a simpler approach.
For example, the session command

MTB >let c6=c4-(c2+c3)/2
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accomplishes this.

Display I.22: Dialog box for carrying out mathematical calculations.

We can also use these arithmetical operations on the constants K1, K2,
etc., and numbers to create new constants or use the constants as scalars in
operations with columns. For example, suppose that we want to compute the
weighted average of the Statistics, Calculus, and Physics grades, where Statistics
gets twice the weight of the other grades. Suppose that we created, as part of the
marks worksheet, the constants weight1 = .5, weight2 = .25, and weight3
= .25 in K1, K2, and K3, respectively. So this weighted average is computed
via the command

MTB >let c7=�weight1�*�stats�+�weight2�*�calculus�&

CONT>+�weight3�*�physics�

9.2 Mathematical Functions

Various mathematical functions are available in Minitab. For example, suppose
we want to compute the natural logarithm of the Statistics mark for each student
and store the result in C8. Using the C

¯
alc I Cal

¯
culator command, with the

dialog box as in Display I.23, accomplishes this. A complete list of such functions
is given in the Functions window when All functions is in the window directly
above the list.

The same result can be obtained using the session command let and the
natural logarithm function loge. For example,

MTB >let c8=loge(c2)

calculates the natural log of every entry in C2 and places the results in C8.
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Display I.23: Dialog box for mathematical calculations illustrating the use of the

natural logarithm function.

9.3 Comparisons and Logical Operations

Minitab also contains the following comparison and logical operators.

Comparison operators Logical operators
equal to =, eq &, and
not equal to <>, ne \, or
less than <, lt ~, not
greater than >, gt
less than or equal to <=, le
greater than or equal to >=, ge

Notice that there are two choices for these operators; for example, use either
the symbol >= or the mnemonic ge.
The comparison and logical operators are useful when we have simple ques-

tions about the worksheet that would be tedious to answer by inspection. This
feature is particularly useful when we are dealing with large data sets. For ex-
ample, suppose that we want to count the number of times the Statistics grade
was greater than the corresponding Calculus grade in the marks worksheet. The
command C

¯
alc I Cal

¯
culator gives the dialog box shown in Display I.24, where

we have put c6 in the S
¯
tore result in variable box and c2 > c3 in the Expres-

sion box. Clicking on the OK button results in the ith entry in C6 containing a
1 if the ith entry in C2 is greater than the ith entry in C3, i.e., the comparison
is true, and a 0 otherwise. In this case, C6 contains the entries: 0, 1, 0, 1, 0,
1, 0, 0, 1, 0, which the worksheet in Display 1.4 veriÞes as appropriate. If we
use C

¯
alc I Cal

¯
culator to calculate the sum of the entries in C6, we will have

computed the number of times the Statistics grade is greater than the Calculus
grade.
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These operations can also be simply carried out using session commands.
For example,

MTB >let c6=c2>c3
MTB >let k4=sum(c6)
MTB >print k4
K4 4.00000

accomplishes this.
The logical operators combine with the comparison operators to allow more

complicated questions to be asked. For example, suppose we wanted to calculate
the number of students whose Statistics mark was greater than their Calculus
mark and less than or equal to their Physics mark. The commands

MTB >let c6=c2>c3 and c2<=c4
MTB >let k4=sum(c6)
MTB >print k4
K4 1.00000

accomplish this. In this case, both conditions c2>c3 and c2<=c4 have to be
true for a 1 to be recorded in C6. Note that the observation with the missing
Physics mark is excluded. Of course, we can also implement this using C

¯
alc I

Cal
¯
culator and Þlling in the dialog box appropriately.
Text variables can be used in comparisons where the ordering is alphabetical.

For example,

MTB >let c6=c5<�m�

puts a 1 in C6 whenever the corresponding entry in C5 is alphabetically smaller
than m.

Display I.24: Dialog box for comparisons.
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9.4 Column and Row Statistics

There are various column statistics that compute a single number from a column
by operating on all of the elements in a column. For example, suppose that we
want the mean of all the Statistics marks, i.e., the mean of all the entries in
C2. The command C

¯
alc I C

¯
olumn Statistics produces the dialog box of Display

I.25, where we have selected Mean as the particular statistic to compute and C2
as the column to use. Clicking OK causes the mean of column C2 to be printed
in the Session window. If we want to, we can store this result in a constant or
column by making an appropriate entry in the Store result in box. In Display
I.25, we see that we have stored the mean of C2 in the constant K1. We also
see from the dialog box that there are a number of possible statistics that can
be computed.
We can also compute statistics row-wise. One difference with column statis-

tics is that these must be stored. For example, suppose we want to compute
the average of the Statistics, Calculus, and Physics marks for each individual.
The command C

¯
alc I Ro

¯
w Statistics produces the dialog box shown in Display

I.26, where we have placed C2, C3, and C4 into the Input variables box and C6
into the Store result in box.

Display I.25: Dialog box for computing column statistics.
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Display I.26: Dialog box for computing row statistics.

It is also possible to compute column statistics using session commands. For
example,

MTB >mean(c2)
MEAN = 69.900

computes the mean of c2. If we want to save the value for subsequent use, then
the command

MTB >let k1=mean(c2)

does this. The general syntax for column statistic commands is

column statistic name(E1)

where the operation is carried out on the entries in column E1, and output is
written to the screen unless it is assigned to a constant using the let command.
See Appendix B.2 for a list of all the column statistics available.
Also, for most column statistics there are versions that compute row statis-

tics, and these are obtained by placing r in front of the column statistic name.
For example,

MTB >rmean(c2 c3 c4 c6)

computes the mean of the corresponding entries in C2, C3, and C4 and places
the result in C6. The general syntax for row statistic commands is

row statistic name(E1 . . . Em Em+1)

where the operations are carried out on the rows in columns E1, . . . , Em, and
the output is placed in column Em+1. See Appendix B.3 for a list of all the row
statistics available.
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9.5 Sorting Data

It often arises that we want to sort a column so that its values ascend from
smallest to largest or descend from largest to smallest. Note that ordering here
could refer to numerical order or alphabetical order, so we also consider ordering
text columns. Also, we may want to sort all the rows contained in some subset
of the columns in the worksheet by a particular column. The Da

¯
ta I S

¯
ort

command (M
¯
anip I S

¯
ort in Version 13) allows us to carry out these tasks.

For example, suppose that we want to sort the entries in C2 in the marks
worksheet�the Statistics grades�from smallest to largest and place the sorted
values in C6. Then the Da

¯
ta I S

¯
ort command brings up the dialog box shown

in Display I.27, where the Sort column(s) box contains the column C2 to be
sorted, the Store sorted data In box contains C6, where we will store the sorted
column, and C2 is also placed in the By column box. This command results in
C6 containing 23, 63, 67, 71, 74, 75, 77, 81, 81, and 87. If we had clicked the
Descending box, the order of appearance of these values in C6 would have been
reversed.
If we had placed another column in the By column box, say C5, then C5

would have been sorted with the values in C2 carried along and placed in C6,
i.e., the values in C2 would be sorted by the values in C5. So all the Statistics
marks of females, in the order they appear in C2 will appear in C6 Þrst and
then the Statistics marks of males. So, replacing C2 by C5 in this box would
result in the values in C6 becoming 77, 71, 87, 81, 74, 81, 75, 63, 23, and 67. If
we Þll in the next By column box with another column, say C3, then the values
in C2 are sorted Þrst by gender and then within gender by the values in C3.

Display I.27: Dialog box for sorting.

The general syntax of the corresponding session command sort is

sort E1 E2 . . .Em Em+1 . . .E2m
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where E1 is the column to be sorted, and E2, ..., Em are carried along with
the results placed in columns Em+1, ..., E2m. Note that this sort can also be
accomplished using the by subcommand, where the general syntax is

sort E1 E2 . . .Em Em+1 . . .E2m;
by E2m+1 . . .En.

where now we sort by columns E2m+1, ..., En, sorting Þrst by E2m+1, then
E2m+2, etc., carrying along E1, ..., Em and placing the result in Em+1, ...,
E2m. The descending subcommand can also be used to indicate which sorting
variables we want to use in descending order, rather than ascending order.

9.6 Computing Ranks

Sometimes, we want to compute the ranks of the numeric values in a column.
The rank ri of the ith value in a column is a value that reßects its relative size
in the column. For example, if the ith value is the smallest value, then ri = 1,
if it is the third smallest, then ri = 3, etc. If values are the same, i.e., tied, then
each value receives the average rank. To calculate the ranks of the entries in
a column, we use the Da

¯
ta I R

¯
ank command (M

¯
anip I R

¯
ank in Version 13).

For example, suppose that C6 contains the values 6, 4 , 3, 2, 3, and 1. Then
the Da

¯
ta I

¯
Rank command brings up the dialog box in Display I.28, which is

Þlled in so that the ranks of the entries in C6 are placed in C7. In this case, the
ranks are 6.0, 5.0, 3.5, 2.0, 3.5, and 1.0, respectively.

Display I.28: Dialog box for computing ranks.

The syntax of the corresponding session command rank is

rank E1 E2

where E1 is the column whose ranks we want to compute and E2 is the column
that will hold the computed ranks.
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10 Exercises

1. Start Minitab and set it up so that you can type commands in the Session
window and edit your output. Print the contents of the Session window.

2. Use the online manual to read and print the entry on how you can get
help in Minitab.

3. Invoke the C
¯
alc I Cal

¯
culator command, place k1 in the Store result in

variable box, read Help in the dialog box, and from this Þgure out how to
compute the expression 203*(10345-678)/3.6. Finally, invoke the session
command print k1 and print the Session window.

4. The following data give the High and Low trading prices in dollars for
various stocks on a given day on an exchange. Create a worksheet, giving
the columns the same variable names. Print the worksheet to check that
you have successfully entered it. Save the worksheet giving it the name
stocks.

Stock High Low
ACR 7.95 7.80
MGI 4.75 4.00
BLD 112.25 109.75
CFP 9.65 9.25
MAL 8.25 8.10
CM 45.90 45.30
AZC 1.99 1.93
CMW 20.00 19.00
AMZ 2.70 2.30
GAC 52.00 50.25

5. Generate a column C1 containing all the values starting at 1 to 10 in
increments of .1. Generate a column C2 containing the sequence 1:10
repeated ten times. Save these two columns in a Þle columns.txt and
print this Þle.

6. Create a .txt Þle containing the data in Exercise 4. Using a format
statement input, these data into a worksheet. Print the contents of your
session.

7. Retrieve the worksheet stocks created in Exercise 4. Change the Low
value in the stock MGI to 3.95. Calculate the average of the High and
Low prices for all the stocks, and save this in a column called average.
Calculate the average of all the High prices, and save this in a constant
called avhi. Similarly, do this for all the Low prices, and save this in a
constant called avlo. Save the worksheet using the same name. Write all
the columns out to a Þle called stocks.dat. Print the Þle stocks.dat on
your system printer.
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8. Retrieve the worksheet created in Exercise 7. Using Minitab commands,
calculate the number of stocks in the worksheet whose average is greater
than $5.00 and less than or equal to $45.00.

9. Using the worksheet created in Exercise 7, insert the following stocks at
the beginning of the worksheet.

Stock High Low
CLV 1.85 1.78
SIL 34.00 34.00
AC 14.45 14.05

Delete the variable average. Print and save the worksheet.

10. (a) Using patterned data input, place the values from −10 to 10 in incre-
ments of .1 in C1.

(b) For each of the values in C1, calculate the value of the quadratic
polynomial 2x2+4x−3 (i.e., substitute the value in each entry in C1 into
this expression) and place these values in C2.

(c) Using Minitab commands and the values in C1 and C2, estimate the
point in the range from −10 to 10 where this polynomial takes its smallest
value and what this smallest value is. (Hint: Compute the ranks of the
values in C2.)

(d) Using Minitab commands and the values in C1 and C2, estimate the
points in the range from −10 to 10 where this polynomial is closest to 0.

11. (a) Using patterned data input, place values in the range from 0 to 5 using
an increment of .01 in C1.

(b) Calculate the value of 1 − e−x for each value in C1 and place the
result in C2.

(c) Using Minitab commands, Þnd the largest value in C1 where the corre-
sponding entry in C2 is less than or equal to .5. Note that e−x corresponds
to the exponentiate command (see Appendix B.1) evaluated at −x.

12. Using patterned data input, place values in the range from −4 to 4 using
an increment of .01 in C1. Calculate the value of

1√
2π

e−x
2/2

for each value in C1, and place the result in C2, where π = 3.1415927.
Using parsums (see Appendix B.1), calculate the partial sums for C2,
and place the result in C3. Multiply C3 times .01. Find the largest value
in C1 such that the corresponding entry in C3 is less than or equal to .25.
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Chapter 1

Looking at
Data�Distributions

New Minitab commands discussed in this chapter

C
¯
alc I Probability D

¯
istributions I N

¯
ormal

Da
¯
ta I Co

¯
de

F
¯
ile I Open G

¯
raph

F
¯
ile I Sav

¯
e Graph As

G
¯
raph I B

¯
oxplot

G
¯
raph I C

¯
hart

G
¯
raph I Do

¯
tplot

G
¯
raph I H

¯
istogram

G
¯
raph I Pi

¯
e Chart

G
¯
raph I Probability

¯
Plot

G
¯
raph I Stem-and-Leaf

¯
G
¯
raph I T

¯
ime Series Plot

S
¯
tat I B

¯
asic Statistics I D

¯
isplay Descriptive Statistics

S
¯
tat I B

¯
asic Statistics I S

¯
tore Descriptive Statistics

S
¯
tat I T

¯
ables I Ta

¯
lly

This chapter of IPS is concerned with the various ways of presenting and sum-
marizing a data set. By presenting data, we mean convenient and informative
methods of conveying the information contained in a data set. There are two
basic methods for presenting data, namely graphically and through tabulations.
Still, it can be hard to summarize exactly what these presentations are saying
about the data. So the chapter also introduces various summary statistics that
are commonly used to convey meaningful information in a concise way.

All of these topics can involve much tedious, error-prone calculation, if we
were to insist on doing them by hand. An important point is that you should
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almost never rely on hand calculation in carrying out a data analysis. Not only
are there many far more important things for you to be thinking about, as the
text discusses, but you are also likely to make an error. On the other hand,
never blindly trust the computer! Check your results and make sure that they
make sense in light of the application. For this, a few simple hand calculations
can prove valuable. In working through the problems in IPS, you should try to
use Minitab as much as possible, as this will increase your skill with the package
and inevitably make your data analyses easier and more effective.

1.1 Tabulating and Summarizing Data

If a variable is categorical, we construct a table using the values of the variable
and record the frequency (count) of each value in the data and perhaps the
relative frequency (proportion) of each value in the data as well. These relative
frequencies then serve as a convenient summarization of the data.
If the variable is quantitative, we typically group the data in some way,

i.e., divide the range of the data into nonoverlapping intervals and record the
frequency and proportion of values in each interval. Grouping is accomplished
using the Da

¯
ta I Co

¯
de (M

¯
anip I Co

¯
de in Version 13) command discussed in

Appendix C.1.
If the values of a variable are ordered, we can record the cumulative dis-

tribution, namely, the proportion of values less than or equal to each value.
Quantitative variables are always ordered but sometimes categorical variables
are as well, e.g., when a categorical variable arises from grouping a quantitative
variable.
Often, it is convenient with quantitative variables to record the empirical

distribution function, which for data values x1, . . . , xn is given by

�F (x) =
# of xi ≤ x

n

at a value x, i.e., �F (x) is the proportion of data values less than or equal to x.
We can summarize such a presentation via the calculation of a few quantities,
such as the Þrst quartile, the median, and the third quartile, or present the mean
and the standard deviation.
We introduce some new commands to carry out the necessary computations

using the data shown in Table 1.1.1. This is data collected by A.A. Michelson
and Simon Newcomb in 1882 concerning the speed of light. We will refer to
these hereafter as Newcomb�s data and place them in the column C1 with the
name time in the worksheet called newcomb.
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28 26 33 24 34 −44 27 16 40 −2 29
22 24 21 25 30 23 29 31 19 24 20
36 32 36 28 25 21 28 29 37 25 28
26 30 32 36 26 30 22 36 23 27 27
28 27 31 27 26 33 26 32 32 24 39
28 24 25 32 25 29 27 28 29 16 23

Table 1.1.1: Newcomb�s data.

1.1.1 Tallying Data

The S
¯
tat I T

¯
ables I Ta

¯
lly command tabulates data. Consider Newcomb�s mea-

surements in Table 1.1.1. These data range from −44 to 40 (use minimum and
maximum in C

¯
alc I Cal

¯
culator to calculate these values). Suppose we decide to

group these into the intervals (−50, 0], (0, 20], (20, 25], (25, 30], (30, 35], (35, 50].
Next, we want to record the frequencies, relative frequencies, cumulative fre-
quencies, and cumulative distribution of this grouped variable. First, we used
the Da

¯
ta I Co

¯
de I N

¯
umeric to Numeric command (M

¯
anip I Co

¯
de I N

¯
umeric

to Numeric in version 13), as described in Appendix C.1, to recode the data so
that every value in (−50, 0] is given the value 1, every value in (0, 20] is given
the value 2, etc., and these values are placed in C2. The dialog box for doing
this is shown in Display 1.1.1.

Display 1.1.1: Dialog box for recoding Newcomb�s data.

Next, we used the S
¯
tat I T

¯
ables I Ta

¯
lly command, with the dialog box

shown in Display 1.1.2, to produce the output
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C2 Count Percent CumCnt CumPct
1 2 3.03 2 3.03
2 4 6.06 6 9.09
3 17 25.76 23 34.85
4 26 39.39 49 74.24
5 10 15.15 59 89.39
6 7 10.61 66 100.00

N= 66

in the Session window.

Display 1.1.2: Dialog box for tallying the variable C2 in the newcomb worksheet.

We can also use the S
¯
tat I T

¯
ables I Ta

¯
lly command to compute the em-

pirical distribution function of C1 in the newcomb worksheet. First, we must
sort the values in C1, from smallest to largest, using the Da

¯
ta I S

¯
ort command

(M
¯
anip I S

¯
ort in Version 13) described in Section I.10.6, and then we apply

the S
¯
tat I T

¯
ables I Ta

¯
lly command to this sorted variable. Note that if values

are repeated, then the value of the empirical cdf at this point is the largest
proportion.
The general syntax of the corresponding session command tally is

tally E1 . . .Em

where E1, ..., Em are columns of categorical variables, and the command is
applied to each column. If no subcommands are given, then only frequencies
are computed, while the subcommands percents computes relative frequencies,
cumcnts computes the cumulative frequency function, and cumpcts computes
the cumulative distribution of C2. Any of the subcommands can be dropped.
For example, the commands

MTB >sort c1 c3
MTB >tally c3;
SUBC>cumpcnts;
SUBC>store c4 c5.
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Þrst use the sort command to sort the data in C1 from smallest to largest and
place the results in C3. The cumulative distribution is computed for the values
in C3 with the unique values in C3 stored in C4 and the cumulative distribution
at each of the unique values stored in C5 via the store subcommand to tally.

1.1.2 Describing Data

The S
¯
tat I B

¯
asic Statistics I D

¯
isplay Descriptive Statistics command is used

with quantitative variables to present a numerical summary of the variable val-
ues. These values are in a sense a summarization of the empirical distribution
of the variable. For example, in the newcomb worksheet the dialog box shown
in Display 1.1.3 leads to the output

Variable N N* Mean SE Mean StDev Minimum Q1 Median
time 66 0 26.21 1.32 10.75 -44.00 24.00 27.00

Q3 Maximum
31.00 40.00

in the Session window. This provides the count N, the number of missing values
N*, the mean, standard error of the mean, standard deviation, minimum, Þrst
quartile Q1, median, third quartile Q3, and maximum of the variable C1. If we
want such a summary of a variable by the values of another variable, we place
these variables in the By variables box (in Version 13 we also need to check the
By box). For example, we might want such a summary for each of the groups
we created in Section 1.1.1, and so we would place C2 in this box. Note that a
number of summary statistics can also be computed using the C

¯
alc I C

¯
olumn

Statistics command discussed in Section I.10.3.

Display 1.1.3: Dialog box for computing basic descriptive statistics of a quantitative

variable.

If we wish to compute some basic statistics and store these values for later
use, then the S

¯
tat I B

¯
asic Statistics I S

¯
tore Descriptive Statistics command
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is available for this. For example, with the newcomb worksheet this command
leads to the dialog box shown in Display 1.1.4. Clicking on the Statistics button
results in the dialog box of Display 1.1.5, where we have checked First quartile,
Median, Third quartile, Interq

¯
uartile range, and N nonmissing as the statistics

we want to compute. The result of these choices is that the next available
variables in the worksheet contain these values. So in this case, the values of
C3�C7 are as depicted in Display 1.1.6. Note that these variables are now named
as well. Note that many more statistics are available using this command.

Display 1.1.4: Dialog box for computing and storing various descriptive statistics.

Display 1.1.5: Dialog box for choosing the descriptive statistics to compute and store.

Display 1.1.6: Values obtained for descriptive statistics using dialog boxes in Displays

1.1.4 and 1.1.5.

The general syntax of the Session command describe, corresponding to S
¯
tat

I B
¯
asic Statistics I D

¯
isplay Descriptive Statistics, is

describe E1 . . .Em
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where E1, ..., Em are columns of quantitative variables and the command is
applied to each column. A by subcommand can also be used. The stats
command is available in the Session window if we want to store the values of
statistics. We refer the reader to help for a description of this command.

1.2 Plotting Data

One of the most informative ways of presenting data is via a plot. There are
many different types of plots within Minitab, and which one to use depends on
the type of variable you have and what you are trying to learn. In this section,
we describe how to use the plotting features in Minitab. There are, however,
many features of plotting that we will not describe. For example, there are
many graphical editing capabilities that allow you to add features, such as titles
or legends. We refer the reader to Help for more details on these features.

A plot in Minitab is made in a Graph window. You can make multiple plots
and retain each Graph window until you want to delete it simply by clicking
the × symbol in the upper right-hand corner. You make any particular Graph
window active by clicking in it or by using the W

¯
indow command. A plot can

be saved in an external Þle in a variety of formats, such as Minitab graph .mgf,
bitmap .bmp JPEG .jpg, etc., using the F

¯
ile I Sav

¯
e Graph As command. If

a graph has been saved in the .mgf format, it can be reopened using the F
¯
ile I

Open G
¯
raph command.

Plotting differs somewhat between Versions 13 and 14, so we discuss each
version separately where this is deemed appropriate.

1.2.1 Stem-and-Leaf Plots

Stem-and-leaf plots are produced by the G
¯
raph I Stem-and-Leaf

¯
command.

These plots are also referred to as stemplots, as in IPS.
For example, using this command with the newcomb worksheet and the dialog

box in Display 1.2.1 produces the following output in the Session window.

Stem-and-leaf of time N = 66
Leaf Unit = 1.0
1 -4 4
1 -3
1 -2
1 -1
2 -0 2
2 0
5 1 669

(41) 2 01122333444445555566666777777888888899999
20 3 0001122222334666679
1 4 0
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It is a stem-and-leaf plot of the values in time with an increment of 10. Notice
that we have placed 10 in the Increment box in the dialog box shown in Display
1.2.1 to reßect the fact we want the stem to be the units of 10.

Display 1.2.1: Dialog box for droducing a stem-and-leaf plot.

The Þrst column gives the depths for a given stem, i.e., the number of obser-
vations on that line and below it or above it, depending on whether or not the
observation is below or above the median. The row containing the median is
enclosed in parentheses ( ), and the depth is only the observations on that line.
If the number of observations is even and the median is the average of values
on different rows, then parentheses do not appear. The second column gives
the stems, as determined by what is placed in Increment, and the remaining
columns give the ordered leaves, where each digit represents one observation.
The Leaf Unit determines where the decimal place goes after each leaf. So in
this example, the Þrst observation is −44.0, while it would be −4.4 if the Leaf
Unit were .1. Multiple stem-and-leaf plots can be carried out for a number of
columns simultaneously and also for a single variable by the values of another
variable.

1.2.2 Histograms

A histogram is a plot where the data are grouped into intervals, and over each
such interval a bar is drawn of height equal to the frequency (count) of data
values in that interval (frequency histogram) or of height equal to the relative
frequency (proportion) of data values in that interval (relative frequency his-
togram) or of height equal to the density of points in that interval, i.e., the
proportion of points in the interval divided by the length of the interval (den-
sity histogram). We recommend plotting density histograms. The G

¯
raph I

H
¯
istogram command is used to obtain these plots. Since the implementation
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of these plots is somewhat different in Versions 13 and 14, we describe this for
each version.
An important consideration when plotting multiple histograms for compar-

ison purposes is to ensure that all the histograms have the same x and y scales
so that the plots are visually comparable. The G

¯
raph I H

¯
istogram command

contains options that impose this restriction.

Histograms in Version 14

Using G
¯
raph I H

¯
istogram with the newcomb worksheet, produces the dialog

box shown in Display 1.2.2. Selecting Simple and clicking on OK leads to the
dialog box in Display 1.2.3. We have placed the variable time in the Graph
variables box to indicate we want a histogram of this variable. To select a
density histogram we click on the Scale button, which brings up the dialog box
of Display 1.2.4, and then click on the Y-scale type to obtain the dialog box
in Display 1.2.5, in which we have Þlled in the Density radio button. Clicking
on OK in this dialog box and in the dialog box of Display 1.2.3 produces the
density histogram of Display 1.2.6.
Note that we can produce multiple histograms by clicking on the Multiple

Graphs button in the dialog box of Display 1.2.3.

Display 1.2.2: Dialog box for selecting type of histogram.

Display 1.2.3: Dialog box for creating a histogram of the time variable in the newcomb

worksheet.
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Display 1.2.4: Dialog box for specifying characteristics of the histogram plotted.

Display 1.2.5: Dialog box for selecting frequency, relative frequency or density

histogram.

Display 1.2.6: Density histogram of the time variable in the newcomb worksheet.
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We can also edit a graph to modify its appearance by double-clicking on
various components of the plot in the graph window. For example, the plot in
Display 1.2.6 is based on a default algorithm in Minitab to divide up the range of
the data into bins and plot each bar over the mid-point of each bin. Sometimes
we prefer to select the bins ourselves and moreover specify cutpoints (the end-
points of each bin) rather than midpoints and have these cutpoints along the
x-axis. To do this, we double click on a value on the x-axis which brings up the
dialog box in Display 1.2.7, where we have clicked on the Binning tab. Here, we
have selected the radio button Cutpoints in the Interval type box and have Þlled
in the cutpoints −45,−30,−15, 0, 15, 30, 45 in the Midpoint/Cutpoint positions
box. Clicking on OK produces the plot shown in Display 1.2.8.

Display 1.2.7: Dialog box for editing the bins for the histogram.

Display 1.2.8: Density histogram of the time variable in the newcomb worksheet with

speciÞed cutpoints.

Histograms in Version 13

In Version 13, using G
¯
raph I H

¯
istogram with the newcomb worksheet produces

the dialog box shown in Display 1.2.9. We have placed the variable time in the
Þrst X box to indicate we want a histogram of this variable. We can produce
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multiple histograms by placing more variables in the X boxes. To select the type
of histogram to plot, we next click on the Op

¯
tions button, which produces the di-

alog box of Display 1.2.10. Here, we have selected a density histogram and have
speciÞed the intervals to use for grouping the data by specifying the cutpoints
−45,−30,−15, 0, 15, 30, 45, which prescribe the intervals [−45,−30), [−30,−15),
etc., for the grouping. Alternatively, we could have speciÞed the midpoints of
the grouping intervals. The advantage with cutpoints is that subintervals of
unequal lengths can be speciÞed. Clicking on the O

¯
K buttons in these boxes

produces a histogram similar to that shown in Display 1.2.8. As can be seen
from the dialog box of Display 1.2.9, there are a variety of methods for control-
ling the appearance of the histogram produced, and we refer the reader to the
Help button for a description of these.

Display 1.2.9: Dialog box for creating a histogram of the time variable in the newcomb

worksheet (Version 13).

Display 1.2.10: Dialog box for selecting the type of histogram to plot (Version 13).

An important consideration when plotting multiple histograms is to ensure
that all the histograms have the same x and y scales so that the plots are visually
comparable. This can be accomplished from the dialog box shown in Display
1.2.9 by F

¯
rame I Mu

¯
ltiple Graphs and then selecting S

¯
ame X and same Y.
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Session Commands for Histograms

The session command histogram is also available. This has the general syntax

histogram E1 . . .Em

where E1, ..., Em correspond to columns. For example, the commands

MTB >histogram c1;
SUBC>cutpoints -45 -30 -15 0 15 30 45;
SUBC>density.

produce the histogram in Display 1.2.8 using the cutpoints and density sub-
commands. There are also subcommands midpoints and nintervals, which
specify the number of subintervals, and frequency or percent, which respec-
tively ensure that the heights of the bar lines equal the frequency and relative
frequency of the data values in the interval. Also, the cumulative subcom-
mand is available so that the bars represent all the values less than or equal
to the endpoint of an interval. The subcommand same ensures that multiple
histograms all have the same scale.

1.2.3 Boxplots

Boxplots are useful summaries of a quantitative variable and are obtained using
the G

¯
raphI B

¯
oxplot command. Boxplots are used to provide a graphical notion

of the location of the data and its scatter in a concise and evocative way.
A boxplot is presented in Display 1.2.13 for the variable time in the newcomb

worksheet. The line in the center of the box is the median. The line below the
median is the Þrst quartile, also called the lower hinge, and the line above is
third quartile, also called the upper hinge. The difference between the third and
Þrst quartile, is called the interquartile range, or IQR. The vertical lines from
the hinges are called whiskers, and these run from the hinges to the adjacent
values. The adjacent values are given by the greatest value less than or equal
to the upper limit (the third quartile plus 1.5 times the IQR) and by the least
value greater than or equal to the lower limit (the Þrst quartile minus 1.5 times
the IQR). The upper and lower limits are also referred to as the inner fences.
The outer fences are deÞned by replacing the multiple 1.5 in the deÞnition of
the inner fences by 3.0. Values beyond the outer fences are plotted with a * and
are called outliers. As with the plotting of histograms, multiple boxplots can be
plotted for comparison purposes, and again, it is important to make sure that
they all have the same scale.

Boxplots in Version 14

In Version 14, the G
¯
raph I B

¯
oxplot command produces the dialog box shown

in Display 1.2.11. Selecting Simple and clicking on OK produces the dialog box
shown in Display 1.2.12, where we have Þlled in the time variable in the Graph
variable box. Clicking on OK produces the boxplot shown in Display 1.2.13.
There is a corresponding session command called boxplot. We refer the

reader to help for more discussion of this command.
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Display 1.2.11: Dialog box for selecting type of boxplot.

Display 1.2.12: Dialog box for producing a boxplot of the time variable in the

newcomb worksheet.

Display 1.2.13: Boxplot of the time variable in the newcomb worksheet.

Boxplots in Version 13

In Version 13, the G
¯
raph I B

¯
oxplot command produces the dialog box shown

in Display 1.2.14, where we have Þlled in the time variable in the Graph 1, Y
box. Clicking on OK produces a plot similar to that shown in Display 1.2.13.
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Display 1.2.14: Dialog box for producing a boxplot of the time variable in the
newcomb worksheet (Version 13).

Session Commands for Boxplots

There is a corresponding session command called boxplot. We refer the reader
to help for more discussion of this command.

1.2.4 Bar Charts

Bar charts are used to plot the distributions of categorical variables.

Bar Charts in Version 14

Consider the categorical variable C2 (created in Section 1.1.1) in the newcomb
worksheet. The command G

¯
raph I Bar

¯
Chart brings up the dialog box shown

in Display 1.2.15. Selecting Simple and clicking on OK brings up the dialog box
shown in Display 1.2.16, where we have Þlled in the Categorical variables box
with C2. Now since we want a graph of the distribution of C2, we next clicked
on the Bar Chart Options button to bring up the dialog box of Display 1.2.17,
where we have checked the Show Y as a Percent box. Clicking on OK in this
and the dialog box of Display 1.2.16 produces the bar chart of Display 1.2.18.

Display 1.2.15: Dialog box for selecting type of bar chart.
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Display 1.2.16: Dialog box for selecting variable to plot in a bar chart.

Display 1.2.17: Dialog box to use to specify that you want the distribution to be

plotted (and not just the counts).

Display 1.2.18: Bar chart of the variable C2 in the newcomb worksheet.



Looking at Data�Distributions 55

Bar Charts in Version 13

Consider the variable C2 (created in Section 1.1.1) in the newcomb worksheet.
In Version 13, we use the G

¯
raph I C

¯
hart command. To get a bar chart of the

distribution we must Þrst tally the variable to determine the relative frequencies
for each of the categories. Then place the values of the variable in one column,
say C3, and the percentages in the corresponding entries of the second column,
say C4. We can then do a bar chart of C3 using the Sum function applied to the
entries in C4. For example, the dialog box shown in Display 1.2.19 plots a bar
chart of the distribution of the variable C2 in the newcomb worksheet similar to
that shown in Display 1.2.18.

Display 1.2.19: Dialog box for plotting bar charts (Version 13).

Session Commands for Bar Charts

The corresponding session command is

chart E1

which produces a bar chart for the values in column E1. The subcommand
percent ensures that the distribution is plotted.

1.2.5 Pie Charts

A pie chart is a disk divided up into wedges where each wedge corresponds to
a unique value of a variable, and the area of the wedge is proportional to the
relative frequency of the value with which it corresponds. Pie charts can be
obtained via G

¯
raph I Pi

¯
e Chart, and there are various features available in the

dialog box that can be used to enhance these plots. Pie charts are a common
method for plotting categorical variables.
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1.2.6 Time Series Plots

Often, data are collected sequentially in time. In such a context, it is instructive
to plot the values of quantitative variables against time in a time series plot.
For this we use the G

¯
raph I T

¯
ime Series Plot command. If we suppose that the

data values in time of the newcomb worksheet were obtained in the order they
are listed (down the Þrst column, then down the second column, etc.), then we
can use this command to obtain the a time series plot.

Time Series Plots in Version 14

The G
¯
raph I T

¯
ime Series Plot command brings up the dialog box shown in

Display 1.2.20. Clicking on Simple and OK brings up the dialog box shown in
Display 1.2.21 where we have asked for a time series plot of the variable time.
This produces the time plot shown in Display 1.2.22. There are various options
available to modify the presentation of this graph.

Display 1.2.20: First dialog box for for producing a time series plot.

Display 1.2.21: Dialog box for a time series plot of the variable time from the

newcomb worksheet.
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Display 1.2.22: Time series plot of the variable time from the newcomb worksheet.

Time Series Plots in Version 13

In Version 13, the G
¯
raph I T

¯
ime Series Plot command brings up the dialog box

shown in Display 1.2.23. Notice that in the D
¯
ata display box we have speciÞed

that the graph should plot a symbol for each point and that the symbols plotted
should connect via lines. For example, if we had left out connect, only the points
would have been plotted. The lines help to visualize the form of the graph. The
symbol plotted is a solid circle but other choices could have been made using the
E
¯
dit Attributes button. Also, for the Time Scale we have chosen Index, which
is just the order in which the observations are listed. If these observations were
made at periodic time intervals, there are other possible choices that could be
more meaningful. This dialog box produces a plot similar to that shown in
Display 1.2.22.

Display 1.2.23: Dialog box for a time series plot of the variable time from the newcomb
worksheet.
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Session Commands for Time Series Plot

There is also a corresponding session command tsplot. We refer the reader to
help for more discussion of this.

1.3 The Normal Distribution

It is important in statistics to be able to do computations with the normal
distribution. The equation of the density curve for the normal distribution with
mean µ and standard deviation σ is given by

1√
2πσ

e−
1
2(

z−µ
σ )

2

where z is a number. We refer to this as the N(µ, σ) density curve. Also of
interest is the area under the density curve from −∞ to a number x, i.e., the
area between the graph of the N(µ, σ) density curve and the interval (−∞, x].
As noted in IPS, this is a value between 0 and 1. Sometimes, we specify a value
p between 0 and 1 and then want to Þnd the point xp, such that p of the area
under the N(µ,σ) density curve lies over (−∞, xp]. The point xp is called the
pth percentile of the N(µ, σ) density curve.

1.3.1 Calculating the Density

Suppose that we want to evaluate the N(µ, σ) probability density function at
a value x. For this, we use the C

¯
alc I Probability D

¯
istributions I N

¯
ormal

command. For example, the dialog box in Display 1.3.1 calculates the N(10, 1)
density curve at the value x = 11.0.

Display 1.3.1: Dialog box for normal probability calculations.

After clicking on the OK button, the output

Normal with mean = 10.0000 and standard deviation = 1.00000
x f( x )

11.0000 0.241971
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is printed in the Session window, which gives the value as 0.241971. Sometimes,
we will want to evaluate the density curve at every value in a column of values,
e.g., when we are plotting this curve. For this, we simply click on the radio
button Input column and type the relevant column in the associated box.
The general syntax of the corresponding session command pdf with the

normal subcommand is

pdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.

where E1, ..., Em are columns or constants containing numbers and Em+1, ...,
E2m are the columns or constants that store the values of the N(µ, σ) density
curve at these numbers and V1 = µ and V2 = σ. If no storage is speciÞed, then
the values are printed. For example, if we want to compute the N(−.5, 1.2) den-
sity curve at every value between −3 and 3 in increments of .01, the commands
MTB >set c1
DATA>-3:3/.01
DATA>end
MTB >pdf c1 c2;
SUBC>normal mu=-.5 sigma=1.2.

put the values between −3 and 3 in increments of .01 in C1 using the set
command. The pdf command with the normal subcommand calculates the
N(−.5, 1.2) density curve at each of these values and puts the outcomes in the
corresponding entries of C2. If we plot C2 against C1, we will have a plot of
the density curve of this distribution. For this, we use the scatterplot facilities
in Minitab as discussed in II.3. Note that with the normal subcommand we
must also specify the mean and the standard deviation via mu and sigma.

1.3.2 Calculating the Distribution Function

Suppose that we want to evaluate the area under N(µ, σ) density curve over the
interval (−∞, x]. This is the value of the cumulative distribution function of
the N(µ, σ) distribution at the value x. For this, we use the C

¯
alc I Probability

¯
Distributions I N

¯
ormal as well, but in this case, in the dialog box of Display

1.3.1, we select Cumulative probability instead. Making this change in the dialog
box of Display 1.3.1, we get the output

x P( X <= x )
11.0000 0.8413

in the Session window. Again, we can evaluate this function at a single point
or at every value in a variable.
The general syntax of the corresponding session command cdf command

with the normal subcommand is

cdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.
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where E1, ..., Em are columns or constants containing numbers and Em+1, ...,
E2m are the columns or constants that store the values of the area under N(µ,σ)
density curve over the interval from −∞ to these numbers and V1 = µ and V2
= σ. If no storage is speciÞed, the values are printed.

1.3.3 Calculating the Inverse Distribution Function

To evaluate inverse cdf for the N(µ, σ) distribution, we again use the C
¯
alc I

Probability D
¯
istributions I N

¯
ormal command, but in this case, in the dialog

box of Display 1.3.1, we select Inverse cumulative probability. Making this
change in the dialog box of Display 1.3.1 and replacing 11 by .75�recall that
the argument to this function must be between 0 and 1�we get the output

P( X <= x ) x
0.7500 10.6745

in the Session window. This indicates that the area to the left of 10.6745 un-
derneath the N(10, 1) density curve is .75.
The general syntax of the corresponding session command invcdf with the

normal subcommand is

invcdf E1 . . .Em into Em+1 . . .E2m;
normal mu = V1 sigma = V2.

where E1, ..., Em are columns or constants containing numbers between 0 and
1 and Em+1, ..., E2m are the columns or constants that store the values of the
percentiles of the N(µ,σ) density curve at these numbers and where V1 = µ
and V2 = σ. If no storage is speciÞed, then the values are printed.

1.3.4 Normal Probability Plots

Some statistical procedures require that we assume that values for some variables
are a sample from a normal distribution. A normal probability plot checks for
the reasonableness of this assumption. To create such a plot, we use the G

¯
raph

I P
¯
robability Plot command.

Normal Probability Plots in Version 14

Suppose we want a normal probability plot for the time variable in the newcomb
worksheet. In Version 14, using G

¯
raph I P

¯
robability Plot, we get the dialog

box in Display 1.3.2, where we have selected Single and then clicked on OK. This
brings up the dialog box in Display 1.3.3, where we placed time in the Variables
box. Clicking on the Scale button and then the Y-Scale Type tab produces the
dialog box of Display 1.3.4, where we have Þlled in the Scores option. Clicking
on the OK button in this and the dialog box of Display 1.3.3 produces the plot
in Display 1.3.5.
The normal probability plot is given by the symbol �. This plot should be

like a straight line. It is not a straight line in this case and would appear to be
clear evidence that the data do not come from a normal distribution. There are
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many other features available with these plots and we refer the reader to the
online manual for a discussion of these.
It should be noted that Minitab computes the (normal) scores as follows.

For an observation that has rank i the normal score is calculated as

Φ−1 ((i− .375) / (n+ .25)) .
In Display 1.3.4, the values (i− .375) / (n+ .25) are referred to as probabilities,
while 100 (i− .375) / (n+ .25) are referred to as percents.

Display 1.3.2: First dialog box for producing a normal probability plot.

Display 1.3.3: Second dialog box for producing normal probability plots.

Display 1.3.4: Dialog box for selecting the Y-scale in a normal probability plot.



62 Chapter 1

time

Sc
or

e

7550250-25-50

3

2

1

0

-1

-2

-3

Mean

<0.005

26.21
StDev 10.75
N 66
AD 5.884
P-Value

Probability Plot of time
Normal - 95% CI

Display 1.3.5: Normal probability plot for the time variable in the newcomb

worksheet.

Normal Probability Plots in Version 13

In Version 13, G
¯
raph I P

¯
robability Plot takes us directly to the dialog box

shown in Display 1.3.6, which we have Þlled in to produce a normal proba-
bility plot like the one in Display 1.3.5, but on the y-axis it uses the values
100 (i− .375) / (n+ .25) (percents).

Display 1.3.6: Dialog box for producing normal probability plots.

Session Commands for Normal Probability Plots

The session commands

MTB >nscores c1 c3
MTB >plot c3*c1

produce a normal probability plot like that shown in Display 1.3.5. The nscores
(normal scores) command computes the score for each observation in C1 and
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places this in the corresponding entry of C3. The plot command then plots C3
versus C1 in a scatterplot.

1.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. Using Newcomb�s measurements in Table 1.1.1, create a new variable by
grouping these values into three subintervals [−50, 0), [0, 20), [20, 50). Cal-
culate the frequency distribution, the relative frequency distribution, and
the cumulative distribution of this ordered categorical variable.

2. (1.33) Use Minitab to print the empirical distribution function. From this,
determine the Þrst quartile, median, and third quartile. Also, use the
empirical distribution function to compute the 10th and 90th percentiles.

3. Use Minitab to produce the stemplot of Example 1.5 of IPS.

4. Use Minitab to produce the time plot of Example 1.6 of IPS.

5. (1.28) Use Minitab commands for the stemplot and the time plot. Use
Minitab commands to compute a numerical summary of this data, and
justify your choices.

6. (1.30) Transform the data in this problem by subtracting 5 from each value
and multiplying by 10. Calculate the means and standard deviations,
using any Minitab commands, of both the original and transformed data.
Compute the ratio of the standard deviation of the transformed data to
the standard deviation of the original data. Comment on this value.

7. (1.30) Transform this data by multiplying each value by 3. Compute
the ratio of the standard deviation to the mean (called the coefficient of
variation) for the original data and for the transformed data. Justify the
outcome.

8. For the N(6, 1.1) density curve, compute the area between the interval
(3, 5) and the density curve. What number has 53% of the area to the left
of it for this density curve?

9. Use Minitab commands to verify the 68-95-99.7 rule for theN(2, 3) density
curve.
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10. Calculate and store the values of the N(0, 1) density curve at each value
in [−3, 3] using an increment of .01. Put the values in the interval [−3, 3]
in C1 and the values of the density curve in C2. Using the command plot
C2*C1, plot the density curve. Comment on the shape of this curve.

11. Use Minitab commands to make the normal quantile plots presented in
Figures 1.32 and 1.34 of IPS.
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New Minitab commands discussed in this chapter

G
¯
raph I P

¯
lot

S
¯
tat I B

¯
asic Statistics I C

¯
orrelation

S
¯
tat I R

¯
egression I F

¯
itted Line Plot

S
¯
tat I R

¯
egression I R

¯
egression

In this chapter, Minitab commands are described that permit the analysis of
relationships among two variables. The methods are different depending on
whether or not both variables are quantitative, both variables are categorical,
or one is quantitative and the other is categorical. This chapter considers rela-
tionships between two quantitative variables with the remaining cases discussed
in later chapters. Graphical methods are very useful in looking for relationships
among variables, and we examine various plots for this.

2.1 Scatterplots

A scatterplot of two quantitative variables is a useful technique when looking
for a relationship between two variables. By a scatterplot we mean a plot of one
variable on the y-axis against the other variable on the x-axis.

For example, consider the data in Table 2.1.1 collected from Þve fossil speci-
mens of the extinct bird Archaeopteryx, where femur is the length in centimeters
of the femur and humerus is the length in centimeters of the humerus. Here we
are concerned with the relationship between the length of the femur and the
length of the humerus. Suppose that we have input the data so that length of
the humerus measurements are in C2, which has been named femur, and the
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length of the femur measurements are in C2, which has been named humerus,
of the worksheet archaeopteryx.

humerus 38 56 59 64 74
femur 41 63 70 72 82

Table 2.1.1: Archaeopteryx data.

We now want to plot the values of C2 against C1. We indicate how to do
this using commands appropriate to the version of Minitab that you are using.

Scatterplots in Version 14

Now we apply the G
¯
raph I S

¯
catterplot command to the contents of C1 and

C2. First, we obtain Display 2.1.1 and from this we select Simple and click
OK, which leads to the dialog box in Display 2.1.2. We then Þll in C2 for the
Y variable and C1 for the X variable. The plot depicted in Display 2.1.3 is
produced in a separate Graph window when we click on OK.

Display 2.1.1: Dialog box for selecting the type of scatterplot.

Display 2.1.2: Dialog box for selecting the columns in a scatterplot.
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Scatterplot of femur vs humerus

Display 2.1.3: Scatter plot of femur length (C1) versus humerus length (C2).

Note that the plotting symbol used in Display 2.1.3 for each point (x, y) is �.
Alternatives are available. Clicking on Data View in the dialog box of Display
2.1.2 leads to the the dialog box of Display 2.1.4. If we select Connect line and
plot the graph, we obtain the plot shown in Display 2.1.5. Also, you can add
projection lines (drop a line from each point to the x-axis), and add areas (Þll in
the area under a polygon joining the points). Furthermore, you can employ the
scatterplot smoother lowess to plot a piecewise linear continuous curve through
the scatter of points (look under Smoother). In particular, the plot itself can
be edited by clicking on objects in the plot.

There are a number of other features that allow you to control the appearance
of the plot. In particular, you can double click any element of the plot and
possibly modify its appearance according to the selections offered in the drop-
down list that appears. For example, if we double click the plotted curve, we
have the option of changing the plotting symbol and its size. We refer the reader
to the online manual for a full description of this feature.

Display 2.1.4: Dialog box for selecting the appearance of the plotted line.
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Display 2.1.5: Scatterplot with connecting lines.

Scatterplots Using Version 13

The command G
¯
raph I P

¯
lot produces the dialog box of Display 2.1.6, where we

have placed femur into the Þrst box for the y variable and humerus in the Þrst
box for the x variable. This produces a plot like that shown in Display 2.1.3.
Note that we could alter the plotting symbol using the dialog box that

appears when we click on the E
¯
dit Attributes box. Using the dialog box that

appears when you click on the
¯
Annotation button, it is possible to give the

plot a title, label plotted points, etc. Using the dialog box that appears when
you click on the F

¯
rame button, you can change the labels on the axes. Rather

than just plotting the points in a scatterplot, you can add connection lines (join
the points with lines), add projection lines (drop a line from each point to the
x-axis), and add areas (Þll in the area under a polygon joining the points).
Also, you can employ the scatterplot smoother lowess to plot a piecewise linear
continuous curve through the scatter of points. These features are available via
G
¯
raph I P

¯
lot I Display. There are a number of other features that allow you

to control the appearance of the plot.

Display 2.1.6: Dialog box for producing a scatterplot.
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Scatterplots Using Session Commands

The corresponding session command is plot. For example,

MTB > plot femur*humerus

produces a plot like that shown in Display 2.1.3. Note that the Þrst variable
is plotted along the y-axis, and the second variable is plotted along the x-axis.
There are various subcommands that can be used with plot, and we refer the
reader to H

¯
elp for a description of these.

2.2 Correlations

While a scatterplot is a convenient graphical method for assessing whether or
not there is any relationship between two variables, we would also like to assess
this numerically. The correlation coefficient provides a numerical summariza-
tion of the degree to which a linear relationship exists between two quantita-
tive variables, and this can be calculated using the S

¯
tat I B

¯
asic Statistics I

C
¯
orrelation command. For example, applying this command to the femur and
humerus variables of the worksheet archaeopteryx, i.e., the data in Table 2.1.1
and depicted in Display 2.1.3, we obtain the output

Pearson correlation of femur and humerus = 0.994
P-Value = 0.001

in the Session window. For now, we ignore the number recorded as P-Value.
The general syntax of the corresponding session command correlate is given

by

correlate E1 . . . Em

where E1, ..., Em are columns corresponding to numerical variables, and a cor-
relation coefficient is computed between each pair. This gives m(m − 1)/2
correlation coefficients. The subcommand nopvalues is available if you want
to suppress the printing of P -values.

2.3 Regression

Regression is another technique for assessing the strength of a linear relationship
existing between two variables and it is closely related to correlation. For this,
we use the S

¯
tat I R

¯
egression command.

As noted in IPS, the regression analysis of two quantitative variables involves
computing the least-squares line y = a+ bx, where one variable is taken to be
the response variable y and the other is taken to be the explanatory variable
x. Note that the least squares line is different depending upon which choice is
made. For example, for the data of of the worksheet archaeopteryx, i.e., the
data in Table 2.1.1 and depicted in Display 2.1.3, letting femur be the response
and humerus be the predictor or explanatory variable, the S

¯
tat I R

¯
egression
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I R
¯
egression command leads to the dialog box of Display 2.2.1, where we have

made the appropriate entries in the Re
¯
sponse and Predi

¯
ctors boxes. Clicking on

the OK button leads to the output of Display 2.2.2 being printed in the Session
window. This gives the least-squares line as y = 3.70 + .826x, i.e., a = 3.70
and b = .826, which we also see under the Coef column in the Þrst table. In
addition, we obtain the value of the square of the correlation coefficient, also
known as the coefficient of determination, as R-Sq = 98.8%. We will discuss
the remaining output from this command in Chapter 10.

Display 2.2.1: Dialog box for a regression analysis.

Display 2.2.2: Output from the dialog box of Display 2.2.1.

It is very convenient to have a scatterplot of the points together with the
least-squares line. This can be accomplished using the S

¯
tat I R

¯
egression I

F
¯
itted Line Plot command. Filling in the dialog box for this command as in
Display 2.2.1 produces the output in the Session window of Display 2.2.2 to-
gether with the plot of Display 2.2.3.
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Display 2.2.3: Scatterplot of femur versus humerus in the archaeopteryx worksheet

together with the least-squares line.

There are some additional quantities that are often of interest in a regression
analysis. For example, you may wish to have the Þtted values �y = a+bx at each
x value printed as well as the residuals y− �y. Clicking on the R

¯
esults button in

the dialog box of Display 2.2.1 and Þlling in the ensuing dialog box as in Display
2.2.4 results in these quantities being printed in the Session window as well as
the output of Display 2.2.2.

Display 2.2.4: Dialog box for controlling output for a regression.

You will probably want to keep these values for later work. In this case, clicking
on the Storage button of Display 2.2.1 and Þlling in the ensuing dialog box as
in Display 2.2.5 results in these quantities being saved in the next two available
columns�in this case, C3 and C4�with the names resl1 and fits1 for the
residuals and Þts, respectively.
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Display 2.2.5: Dialog box for storing various quantities computed in a regression.

Even more likely is that you will want to plot the residuals as part of assessing
whether or not the assumptions that underlie a regression analysis make sense
in the particular application. For this, click on the Graphs button in the dialog
box of Display 2.2.1. The dialog box of Display 2.2.6 becomes available. Notice
that we have requested that the standardized residuals�each residual divided
by its standard error�be plotted, and this plot appears in Display 2.2.7. All the
standardized residuals should be in the interval (−3, 3) , and no pattern should
be discernible. In this case, this residual plot looks Þne. From the dialog box of
Display 2.2.6, we see that there are many other possibilities for residual plots.

Display 2.2.6: Dialog box for selecting various residual plots as part of a regression.
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Display 2.2.7: Plot of the standardized residuals versus humerus after regressing

femur against humerus in the archaeopteryx worksheet.

The corresponding session command is given by regress, and by using the
subcommands pÞts, residual, and sresidual we can calculate and store Þtted
values, residuals, and standardized residuals, respectively. For example,

MTB > regress c1 1 c2;
SUBC> fits c3;
SUBC> residuals c4;
SUBC> sresiduals c5.

gives the output of Display 2.2.2 and also stores the Þtted values in C3, stores
the residuals y − �y in C4, and stores the standardized residuals in C5. Note
that the 1 in regress c1 1 c2 refers to the number of predictors we are using
to predict the response variable. To plot the standardized residuals against
humerus, we use

MTB > plot c5*c2

which results in a plot like Display 2.2.7 but with different labels on the x axis.

2.4 Transformations

Sometimes, transformations of the variables are appropriate before we carry
out a regression analysis. This is accomplished in Minitab using the C

¯
alc I

Cal
¯
culator command and the arithmetical and mathematical operations dis-

cussed in Sections I.10.1 and I.10.2. In particular, when a residual plot looks
bad, sometimes this can be Þxed by transforming one or more of the variables
using a simple transformation, such as replacing the response variable by its
logarithm or something else. For example, if we want to calculate the cube root
� i.e., x1/3�of every value in C1 and place these in C2, we use the C

¯
alc I
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Cal
¯
culator command and the dialog box as depicted in Display 2.2.8. Alterna-

tively, we could use the session command let as in

MTB > let c2=c1**(1/3)

to produce the same result.

Display 2.2.8: Dialog box for calculating transformations of variables.

2.5 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. (2.14) Calculate the least-squares line and make a scatterplot of Fuel used
against Speed together with the least-squares line. Plot the standard-
ized residuals against Speed. What is the squared correlation coefficient
between these variables?

2. (2.13) Make a scatterplot of Rate against Mass where the points for dif-
ferent Sexes are labeled differently (use Minitab for the labeling, too) and
with the least-squares line on it. Hint: Make use of the stack command
discussed in Appendix C.5.

3. Place the values 1 through 100 with an increment of .1 in C1 and the
square of these values in C2. Calculate the correlation coefficient between
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C1 and C2. Multiply each value in C1 by 10, add 5, and place the results
in C3. Calculate the correlation coefficient between C2 and C3. Why are
these correlation coefficients the same?

4. Place the values 1 through 100 with an increment of .1 in C1 and the
square of these values in C2. Calculate the least-squares line with C2 as
response and C1 as explanatory variable. Plot the standardized residuals.
If you see such a pattern of residuals what transformation, might you use
to remedy the problem?

5. (2.45) For the data in this problem, numerically verify the algebraic re-
lationship that exists between the correlation coefficient and the slope of
the least-squares line.

6. For Example 2.17 in IPS, calculate the least-squares line and reproduce
Display 2.21. Calculate the sum of the residuals and the sum of the
squared residuals and divide this by the number of data points minus 2.
Is there anything you can say about what these quantities are equal to in
general?

7. (2.70) Use Minitab to do all the calculations in this problem.

8. Place the values 1 through 10 with an increment of .1 in C1, and place
exp (−1 + 2x) of these values in C2. Calculate the least-squares line using
C2 as the response variable, and plot the standardized residuals against
C1. What transformation would you use to remedy this residual plot?
What is the least-squares line when you carry out this transformation?
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Chapter 3

Producing Data

New Minitab commands discussed in this chapter

C
¯
alc I Set B

¯
ase

C
¯
alc I R

¯
andom Data

This chapter is concerned with the collection of data, perhaps the most impor-
tant step in a statistical problem, as this determines the quality of whatever
conclusions are subsequently drawn. A poor analysis can be Þxed if the data
collected are good by simply redoing the analysis. But if the data have not been
appropriately collected, then no amount of analysis can rescue the study. We
discuss Minitab commands that enable you to generate samples from popula-
tions and also to randomly allocate treatments to experimental units.
Minitab uses computer algorithms to mimic randomness. Still, the results

are not truly random. In fact, any simulation in Minitab can be repeated, with
exactly the same results being obtained, using the C

¯
alc I Set B

¯
ase command.

For example, in the dialog box of Display 3.1, we have speciÞed the base, or
seed, random number as 1111089. The base can be any integer. When you
want to repeat the simulation, you give this command, with the same integer.
Provided you use the same simulation commands, you will get the same results.
This can also be accomplished using the session command base V, where V is
an integer.

Display 3.1: Dialog box for setting base or seed random number.
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3.1 Generating a Random Sample

Suppose that we have a large population of size N and we want to select a
sample of n < N from the population. Further, we suppose that the elements
of the population are ordered, i.e., we have been able to assign a unique number
1, . . . , N to each element of the population. To avoid selection biases, we want
this to be a random sample, i.e., every subset of size n from the population has
the same �chance� of being selected. As discussed in IPS, this implies that we
generate our sample so that every subset of size n in the population has the same
chance of being chosen. We can do this physically by using some simple random
system, such as chips in a bowl or coin tossing. We could also use a table of
random numbers, or, more conveniently, we can use computer algorithms that
mimic the behavior of random systems.
For example, suppose there are 1000 elements in a population, and we want

to generate a sample of 50 from this population without replacement. We can
use the C

¯
alc I R

¯
andom Data I Sam

¯
ple from Columns command to do this.

For example, suppose we have labeled each element of the population with a
unique number in 1, 2, . . . , 1000, and, further, we have put these numbers in C1
of a worksheet. The dialog box of Display 3.1.1 results in a random sample of
50 being generated without replacement from C1 and stored in C2.

Display 3.1.1: Dialog box for generating a random sample without replacement.

Printing this sample gives the output

MTB > print c2
C2
441 956 87 736 185 515 883 957 690
438 205 760 246 16 321 371 493 393
538 348 70 54 362 492 182 841 287
277 112 610 890 503 332 413 886 798
764 584 566 495 547 488 206 557 263
414 613 618 685 864
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in the Session window. So now we go to the population and select the elements
labeled 441, 956, 87, etc. The algorithm that underlies this command is such
that we can be conÞdent that this sample of 50 is like a random sample.
The general syntax of the corresponding session command sample is

sample V E1 . . . Em put into Em+1 . . . E2m

where V is the sample size n and V rows are sampled from the columns E1,
..., Em and stored in columns Em+1, ..., E2m. If we wanted to sample with
replacement�i.e., after a unit is sampled, it is placed back in the population so
that it can possibly be sampled again�we use the replace subcommand. Of
course, for simple random sampling, we do not use the replace subcommand.
Note that the columns can be numeric or text.
Sometimes we want to generate random permutations, i.e., n = N , and we

are simply reordering the elements of the population. For example, in exper-
imental design, suppose we have N = n1 + · · · + nk experimental units and
k treatments, and we want to allocate ni applications of treatment i. Suppose
further that we want all possible such applications to be equally likely. Then we
generate a random permutation (l1, . . . , lN) of (1, . . . , N) and allocate treatment
1 to those experimental units labeled l1, . . . , ln1 , allocate treatment 2 to those
experimental units labeled ln1+1, . . . , ln1+n2 , etc. For example, if we have 30
experimental units and 3 treatments and we want to allocate 10 experimental
units to each treatment, placing the numbers 1, 2, . . . , 30 in C1 and using the
C
¯
alc I R

¯
andom Data I Sam

¯
ple from Columns command as in the dialog box of

Display 3.1.1, but with 30 in the S
¯
ample box, generates a random permutation

of 1, 2, . . . , 30 in C2. Implementing this gives us the random permutation

MTB > print c2
C2
13 7 26 8 22 23 28 17 3 25
9 2 14 29 15 18 6 11 16 5
12 27 4 30 20 24 1 19 21 10

and for the treatment allocation you can read the numbers row-wise or column-
wise, as long as you are consistent. Row-wise is probably best, as this is how the
numbers are stored in C2, and so you can always refer back to C2 (presuming
you save your worksheet) if you get mixed up.
The above examples show how to directly generate a sample from a popu-

lation of modest size. But what happens if the population is huge or it is not
convenient to label each unit with a number? For example, suppose we have
a population of size 100,000 for which we have an ordered list and we want a
sample of size 100. In this case, more sophisticated techniques need to be used,
but simple random sampling can still typically be accomplished (see Exercise
3.3 for a simple method that works in some contexts).
Simple random sampling corresponds to sampling without replacement, i.e.,

after we randomly select an element from the population, we do not return
it to the population before selecting the next sample element. Sampling with
replacement corresponds to replacing each sample element in the population
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after selecting it and recording only the element that was obtained. So at each
selection, every element has the same chance of being selected, and an element
may appear more than once in the sample. Notice that we can also sample with
replacement if we check the Sample with replacement box in the dialog box of
Display 3.1.1.

3.2 Sampling from Distributions

Once we have generated a sample from a population, we measure various at-
tributes of the sampled elements. For example, if we were sampling from a pop-
ulation of humans, we might measure each sampled unit�s height. The height for
the sample unit is now a random variable that follows the height distribution in
the population from which we are sampling. For example, if 80% of the people
in the population are between 4.5 feet and 6 feet, then under repeated sampling
of an element from the population (with replacement) in the long run, 80% of
the sampled units will have their heights in this range.
Sometimes, we want to sample directly from this population distribution,

i.e., generate a number in such a way that under repeated sampling in the long
run the proportion of values falling in any range agrees with that prescribed by
the population distribution. Of course, we typically don�t know the population
distribution, as this is what we want to Þnd out about in a statistical investiga-
tion. Still, there are many instances where we want to pretend that we do know
it and simulate from this distribution, e.g., perhaps we want to consider the
effect of various choices of population distribution on the sampling distribution
of some statistic of interest.
There are computer algorithms that allow us to do this for a variety of

distributions. In Minitab, this is accomplished using the C
¯
alc I R

¯
andom Data

command. For example, suppose that we want to simulate the tossing of a fair
coin (a coin where head and tail are equally likely as outcomes). The C

¯
alc I

R
¯
andom Data I Be

¯
rnoulli command together with the dialog box of Display

3.2.1 generates a sample of 100 from the Bernoulli(.5) distribution and places
these values in C1. A random variable has a Bernoulli(p) distribution if the
probability the variable equals 1�success�is p and the probability the variable
equals 0�failure�is 1− p. So to generate a sample of n from the Bernoulli(p)
distribution, we put n in the Generate box and p in the Probability of success
box. In such a case, we are simulating the tossing of a coin that produces a
head on a single toss with probability p, i.e., the long-run proportion of heads
that we observe in repeated tossing is p. Note that we can generate m samples
of size n by putting m distinct columns in the Store in column(s) box.
Often, a normal distribution with some particular mean and standard devia-

tion is considered a reasonable assumption for the distribution of a measurement
in a population. For example, the C

¯
alc I R

¯
andom Data I N

¯
ormal command

together with the dialog box of Display 3.2.2 generates a sample of 200 from the
N(5.2, 1.3) distribution and places this sample in C1. To generate a sample of
n from the N(µ, σ) distribution, we put n in the Generate box, µ in the Mean
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box, and σ in the Standard deviation box.

Display 3.2.1: Dialog box for generating a sample form a Bernoulli distribution.

Display 3.2.2: Dialog box for generating a sample of 200 from a N(5.2, 1.3)
distribution.

The general syntax of the corresponding session command random is

random V into E1 . . . Em

and this puts a sample of size V into each of the columns E1, ..., Em, according
to the distribution speciÞed by the subcommand. For example,

MTB > random 100 c1;
SUBC> bernoulli .5.

simulates the tossing of a fair coin 100 times and places the results in C1 using
the bernoulli subcommand. If no subcommand is provided, this distribution
is taken to be the N(0, 1) distribution. The command
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MTB > random 200 c1;
SUBC> normal mu=2.1 sigma=3.3.

generates a sample of 200 from the N(2.1, 3.3) distribution using the normal
subcommand. There are a number of other subcommands specifying distribu-
tions, and we refer the reader to help for a description of these.

3.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
If your version of Minitab places restrictions such that the value of the sim-

ulation sample size N requested in these problems is not feasible, then substitute
a more appropriate value. Be aware, however, that the accuracy of your results
is dependent on how large N is.

1. (3.13) Generate a random permutation of the names using Minitab.

2. (3.32) Use the Da
¯
ta I S

¯
ort command described in I.10.6 to order the sub-

jects by weight. Use the values 1�5 to indicate Þve blocks of equal length
in a separate column, and then use the Da

¯
ta I Unstack command de-

scribed in Appendix C.5 to put the blocks in separate columns. Generate
a random permutation of each block.

3. Use the following methodology to generate a sample of 20 from a pop-
ulation of 100,000. First, put the values 0�9 in each of C1�C5. Next,
use sampling with replacement to generate 50 values from C1, and put
the results in C6. Do the same for each of C2�C5 and put the results
in C7�C10 (don�t generate from these columns simultaneously). Create a
single column of numbers using the digits in C6�C10 as the digits in the
numbers. Pick out the Þrst unique 20 entries as labels for the sample. If
you do not obtain 20 unique values, repeat the process until you do. Why
does this work?

4. Suppose you wanted to carry out stratiÞed sampling where there are three
strata, with the Þrst stratum containing 500 elements, the second stratum
containing 400 elements, and the third stratum containing 100 elements.
Generate a stratiÞed sample with 50 elements from the Þrst stratum, 40
elements from the second stratum, and 10 elements from the third stratum.
When the strata sample sizes are the same proportion of the total sample
size as the strata population sizes are of the total population size this is
called proportional sampling.
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5. Suppose we have an urn containing 100 balls with 20 labeled 1, 50 labeled
2, and 30 labeled 3. Using sampling with replacement, generate a sample
of size 1000 from this distribution employing the C

¯
alc I R

¯
andom Data

command to generate the sample directly from the relevant population
distribution. Use the S

¯
tat I T

¯
ables I C

¯
ross Tabulation command to

record the proportion of each label in the sample.

6. Carry out a simulation study with N = 1000 of the sampling distribution
of �p for n = 5, 10, 20 and for p = .5, .75, .95. In particular, calculate the
empirical distribution functions and plot the histograms. Comment on
your Þndings.

7. Carry out a simulation study with N = 2000 of the sampling distribution
of the sample standard deviation when sampling from the N(0, 1) distri-
bution based on a sample of size n = 5. In particular, plot the histogram
using cutpoints 0, 1.5, 2.0 2.5, 3.0 5.0. Repeat this for the sample coeffi-
cient of variation (sample standard deviation divided by the sample mean)
using the cutpoints −10, −9, ..., 0, ..., 9, 10. Comment on the shapes of
the histograms relative to an N(0, 1) density curve.
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Chapter 4

Probability:The Study of
Randomness

In this chapter, the concept of probability is introduced more formally than pre-
viously in the book. Probability theory underlies the powerful computational
methodology known as simulation, which we introduced in Chapter 3. Simula-
tion has many applications in probability and statistics and also in many other
Þelds, such as engineering, chemistry, physics, and economics.

4.1 Basic Probability Calculations

The calculation of probabilities for random variables can often be simpliÞed
by tabulating the cumulative distribution function. Also, means and variances
are easily calculated using component-wise column operations in Minitab. For
example, suppose we have the probability distribution

x 1 2 3 4
probability .1 .2 .3 .4

in columns C1 and C2, with the values in C1 and the probabilities in C2. The
C
¯
alc I Cal

¯
culator command with the dialog box as in Display 4.1.1 computes

the cumulative distribution function in C3 using Partial Sums.

85



86 Chapter 4

Display 4.1.1: Dialog box for computing partial sums of entries in C2 and placing

these sums in C3.

Printing C1 and C3 gives

Row C1 C3
1 1 0.1
2 2 0.3
3 3 0.6
4 4 1.0

in the Session window. We can also easily compute the mean and variance of
this distribution. For example, the session commands

MTB > let c4=c1*c2
MTB > let c5=c1*c1*c2
MTB > let k1=sum(c4)
MTB > let k2=sum(c5)-k1*k1
MTB > print k1 k2
K1 3.00000
K2 1.00000

calculate the mean and variance and store these in K1 and K2, respectively. The
mean is 3 and the variance is 1. Of course, we can also use C

¯
alc I Cal

¯
culator

to do these calculations. In presenting more extensive computations, it is some-
what easier to list the appropriate session commands, as we will do subsequently.
However, this is not to be interpreted as the required way to do these compu-
tations, as it is obvious that the menu commands can be used as well. Use
whatever you Þnd most convenient.
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4.2 More on Sampling from Distributions

As we saw in Section 3.2, Minitab includes algorithms for generating from many
probability distributions using C

¯
alc I R

¯
andom Data. This menu command

produces a drop-down list that includes the normal, binomial, Chi-square, F ,
t, uniform, and many other distributions that the text, and this manual, will
discuss. Clicking on one of these names results in a dialog box with entries to
be Þlled in further specifying the distribution and the size of the sample.
For example, we can generate from one particularly important class of prob-

ability distributions using C
¯
alc I R

¯
andom Data I D

¯
iscrete. These probability

distributions are concentrated on a Þnite number of values. To illustrate this,
suppose we have the following values in C1 and C2.

Row C1 C2
1 -1 0.3
2 2 0.2
3 3 0.4
4 10 0.1

Here, C1 contains the possible values of an outcome, and C2 contains the prob-
abilities that each of these values is obtained, so, for example, P ({−1}) =
.3, P ({2}) = .2, etc. The dialog box of Display 4.2.1 generates a sample of 50
from this discrete distribution and stores the sample in C3.

Display 4.2.1: Dialog box for generating a sample from a discrete distribution with

values in C1 and probabilities in C2 and storing the sample in C3.

It is an interesting exercise to check that the algorithms Minitab is using are
in fact producing samples appropriately. There are a variety of things one could
check, but perhaps the simplest is to check that the long-run relative frequencies
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are correct. So in the example of this section, we want to make sure that, as
we increase the size of the sample, the relative frequencies of −1, 2, 3, 10 in the
sample are getting closer to .3, .2, .4, and .1, respectively. Note that it is not
guaranteed that as we increase the sample size that the relative frequencies get
closer monotonically to the corresponding probabilities, but inevitably this must
be the case.
First, we generated a sample of size 100 from this distribution and stored

the values in C3 as in Display 4.2.1. Next, we recorded a 1 in C4 whenever the
corresponding entry in C3 was −1 and recorded a 0 in C4 otherwise. To do this,
we used the C

¯
alc I Cal

¯
culator command with dialog box as shown in Display

4.2.2.

Display 4.2.2: Dialog box to record the incidence of a −1 in C3.
It is clear that the mean of C4 is the relative frequency of −1 in the sample.
We calculated this mean using C

¯
alc I C

¯
olumn Statistics, as discussed in I.10.4,

which gave the output

Mean of C4 = 0.33000

in the Session window. Repeating this with a sample of size 1000, we obtained

Mean of C4 = 0.28100

which we can see is a bit closer to the true value of .3. Repeating this with a
sample of size 10, 000 from this distribution, we obtained

Mean of C4 = 0.29300

which is closer still. It would appear that the relative frequency of −1 is indeed
converging to .3.
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We can generate a randomly chosen point from the line interval (a, b) , where
a < b, using C

¯
alc I R

¯
andom Data I U

¯
niform. For example, the dialog box

of Display 4.2.3 generates a sample of 1500 from the uniform distribution on
the interval (3.0, 6.3) .With this distribution, the probability of any subinterval
(c, d) of (a, b) is given by (d− c) / (b− a), i.e., the length of (c, d) over the length
of (a, b). Of course, we can estimate this probability by just counting the number
of times the generated response falls in the interval (c, d) and dividing this by
the total sample size. For example, using the outcomes from the dialog box of
Display 4.2.3 and estimating the probability of the interval (4, 5), we get the
relative frequency 0.30867, which is close to the true value of (5− 4) / (6.3− 3) =
0.30303.

Display 4.2.3: Dialog box for generating a sample of 1500 from a Uniform(3, 6.3)
distribution and storing the sample in C3.

We can generalize this to generate from a point randomly chosen from a
rectangle (a, b)× (c, d), i.e., the set of all points (x, y) such that a < x < b, c <
y < d. If we want a sample of n from this distribution, we generate a sample
x1, . . . , xn from the uniform on (a, b) and also generate a sample y1, . . . , yn from
the uniform distribution on (c, d). Then (x1, y1) , . . . , (xn, yn) is a sample of
n from the uniform distribution on (a, b) × (c, d). We can approximate the
probability of a random pair (x, y) falling in any subset A ⊂ (a, b) × (c, d) by
computing the relative frequency of A in the sample.
The random command is the session command for carrying out simulations

in Minitab. For example, the subcommand

uniform V1 V2

speciÞes the continuous uniform distribution on the interval (V1,V2); i.e., subin-
tervals of the same length have the same probability of occurring. If we have



90 Chapter 4

placed a discrete probability distribution in column E2, on the values in column
E1, the subcommand

discrete E1 E2

generates a sample from this distribution.

4.3 Simulation for Approximating Probabilities

As previously noted, simulation can be used to approximate probabilities. For
a variety of reasons, these simulations are most easily presented using session
commands but it is clear that we can replace each step by the appropriate menu
command.
For example, suppose we are asked to calculate

P (.1 ≤ X1 +X2 ≤ .3)
when X1,X2 are both independent and follow the uniform distribution on the
interval (0, 1) . The session commands

MTB > random 1000 c1 c2;
SUBC> uniform 0 1.
MTB > let c3=c1+c2
MTB > let c4 = .1<=c3 and c3<=.3
MTB > let k1=sum(c4)/n(c4)
MTB > print k1
K1 0.0400000
MTB > let k2=sqrt(k1*(1-k1)/n(c4))
MTB > print k2
K2 0.00619677
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k3 k4
K3 0.0214097
K4 0.0585903

generate N = 1000 independent values of X1,X2 and place these values in C1
and C2, respectively, then calculate the sum X1 +X2 and put these values in
C3. Using the comparison operators discussed in I.10.3, a 1 is recorded in C4
every time .1 ≤ X1 +X2 ≤ .3 is true and a 0 is recorded there otherwise. We
then calculate the proportion of 1�s in the sample as K1, and this is our estimate
�p of the probability. We will see later that a good measure of the accuracy of
this estimate is the standard error of the estimate, which in this case is given
by p

�p (1− �p) /N
and this is computed in K2. Actually, we can feel fairly conÞdent that the true
value of the probability is in the interval

�p± 3
p
�p (1− �p) /N
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which in this case, equals the interval (0.0214097, 0.0585903). So we know the
true value of the probability with reasonable accuracy. As the simulation size
N increases, the Law of Large Numbers says that �p converges to the true value
of the probability.

4.4 Simulation for Approximating Means

The means of distributions can be approximated using simulations in Minitab.
For example, suppose X1,X2 are both independent and follow the uniform
distribution on the interval (0, 1) and that we want to calculate the mean of
Y = 1/ (1 +X1 +X2) . We can approximate this in a simulation. The session
commands

MTB > random 1000 c1 c2;
SUBC> uniform 0 1.
MTB > let c3=1/(1+c1+c2)
MTB > let k1=mean(c3)
MTB > let k2=stdev(c3)/sqrt(n(c3))
MTB > print k1 k2
K1 0.521532
K2 0.00375769
MTB > let k3=k1-3*k2
MTB > let k4=k1+3*k2
MTB > print k3 k4
K3 0.510259
K4 0.532805

generate N = 1000 independent values of X1,X2 and place these values in C1,
C2, then calculate Y = 1/ (1 +X1 +X2) and put these values in C3. The mean
of C3 is stored in K1, and this is our estimate of the mean value of Y . As a
measure of how accurate this estimate is, we compute the standard error of the
estimate, which is given by the standard deviation divided by the square root
of the simulation sample size N . Again, we can feel fairly conÞdent that the
interval given by the estimate plus or minus 3 times the standard error of the
estimate contains the true value of the mean. In this case, this interval is given
by (0.510259, 0.532805), and so we know this mean with reasonable accuracy.
As the simulation size N increases, the Law of Large Numbers says that the
approximation converges to the true value of the mean.

4.5 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
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Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
If your version of Minitab places restrictions such that the value of the sim-

ulation sample size N requested in these problems is not feasible, then substitute
a more appropriate value. Be aware, however, that the accuracy of your results
is dependent on how large N is.

1. Suppose we have the probability distribution

x 1 2 3 4 5
probability .15 .05 .33 .37 .10

on the values 1, 2, 3, 4, and 5. Calculate the mean and variance of this
distribution. Suppose that three independent outcomes (X1,X2,X3) are
generated from this distribution. Compute the probability that 1 < X1 ≤
4, 2 ≤ X2 and 3 < X3 ≤ 5.

2. Suppose we have the probability distribution

x 1 2 3 4 5
probability .15 .05 .33 .37 .10

on the values 1, 2, 3, 4, and 5. Using Minitab, verify that this is a
probability distribution. Make a bar chart (probability histogram) of this
distribution. Generate a sample of size 1000 from this distribution and
plot a relative frequency histogram for the sample.

3. (4.25) Indicate how you would simulate the game of roulette using Minitab.
Based on a simulation of N = 1000, estimate the probability of getting
red and a multiple of 3.

4. A probability distribution is placed on the integers 1, 2, ..., 100, where the
probability of integer i is c/i2. Determine c so that this is a probability
distribution. What is the 90th percentile? Generate a sample of 20 from
the distribution.

5. Suppose an outcome is random on the square (0, 1)× (0, 1). Using simula-
tion, approximate the probability that the Þrst coordinate plus the second
coordinate is less than .75 but greater than .25.

6. Generate a sample of 1000 from the uniform distribution on the unit disk
D =

©
(x, y) : x2 + y2 ≤ 1ª .

7. The expression e−x for x > 0 is the density curve for what is called the
Exponential(1) distribution. Plot this density curve in the interval from 0
to 10 using an increment of .1. The C

¯
alc I R

¯
andom Data I Ex

¯
ponential

command can be used to generate from this distribution by specifying the
Mean as 1 in the ensuing dialog box. Generate a sample of 1000 from this
distribution and estimate its mean. Approximate the probability that a
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value generated from this distribution is in the interval (1,2). The general
Exponential(λ) has a density curve given by λ−1e−x/λ for x > 0 and where
λ > 0 is the mean. Repeat the simulation with mean λ = 3. Comment on
the values of the estimated means.

8. Suppose you carry out a simulation to approximate the mean of a random
variable X and you report the value 1.23 with a standard error of .025.
If you are asked to approximate the mean of Y = 3 + 5X, do you have
to carry out another simulation? If not, what is your approximation, and
what is the standard error of this approximation?

9. Suppose that a random variable X follows an N(3, 2.3) distribution. Sub-
sequently, conditions change and no values smaller than −1 or bigger than
9.5 can occur, i.e., the distribution is conditioned to the interval (−1, 9.5).
Generate a sample of 1000 from the truncated distribution, and use the
sample to approximate its mean.

10. Suppose that X is a random variable and follows an N(0, 1) distribution.
SimulateN = 1000 values from the distribution of Y = X2, and plot these
values in a histogram with cutpoints 0, .5, 1, 1.5, ..., 15. Approximate the
mean of this distribution. Generate Y directly from its distribution, which
is known to be a Chi-square(1) distribution. In general, the Chi-square(k)
distribution can be generated from via the command C

¯
alcI R

¯
andom Data

I C
¯
hi-Square, where k is speciÞed as the Degrees of freedom in the dialog

box. Plot the Y values in a histogram using the same cutpoints. Comment
on the two histograms. Note that you can plot the density curve of these
distributions using C

¯
alc I Probability D

¯
istributions I C

¯
hi-Square and

evaluating the probability density at a range of points as we discussed in
II.2 for the normal distribution.

11. If X1 and X2 are independent random variables with X1 following a Chi-
square(k1) distribution and X2 following a Chi-square(k2) distribution,
then it is known that Y = X1 + X2 follows a Chi-square(k1 + k2) distri-
bution. For k1 = 1, k2 = 1, verify this empirically by plotting histograms
with cutpoints 0, .5, 1, 1.5, ..., 15, based on simulations of size N = 1000.

12. If X1 and X2 are independent random variables with X1 following an
N(0, 1) distribution and X2 following a Chi-square(k) distribution, then
it is known that

Y =
X1p
X2/k

follows a Student(k) distribution. The Student(k) distribution can be
generated from using the command C

¯
alc I R

¯
andom Data I t

¯
, where k

is the D
¯
egrees of freedom and must be speciÞed in the dialog box. For

k = 3, verify this result empirically by plotting histograms with cutpoints
−10, −9, ..., 9, 10, based on simulations of size N = 1000.
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13. If X1 and X2 are independent random variables with X1 following a Chi-
square(k1) distribution and X2 following a Chi-square(k2) distribution,
then it is known that

Y =
X1/k1
X2/k2

follows an F (k1, k2) distribution. The F (k1, k2) distribution can be gen-
erated from using the subcommand C

¯
alc I R

¯
andom Data I F

¯
, where k1

is the Numerator degrees of freedom and k2 is the Denominator degrees
of freedom, both of which must be speciÞed in the dialog box. For k1 = 1,
k2 = 1, verify this empirically by plotting histograms with cutpoints 0, .5,
1, 1.5, ..., 15, based on simulations of size N = 1000.
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Sampling Distributions

New Minitab command discussed in this chapter

C
¯
alc I Probability D

¯
istributions I B

¯
inomial

Once data have been collected, they are analyzed using a variety of statistical
techniques. Virtually all of these involve computing statistics that measure
some aspect of the data concerning questions we wish to answer. The answers
determined by these statistics are subject to the uncertainty caused by the fact
that we typically do not have the full population but only a sample from the
population. As such, we have to be concerned with the variability in the answers
when different samples are obtained. This leads to a concern with the sampling
distribution of a statistic.
Sometimes, the sampling distribution of a statistic can be worked out exactly

through various mathematical techniques, e.g., in Chapter 5 of IPS it is seen
that the number of 1�s in a sample of n from a Bernoulli(p) distribution is
Binomial(n, p). Often, however, this is not possible, and we must resort to
approximations. One approximation technique is to use simulation. Sometimes,
however, the statistics we are concerned with are averages, and, in such cases,
the central limit theorem justiÞes approximating the sampling distribution via
an appropriate normal distribution.

5.1 The Binomial Distribution

Suppose that X1, . . . ,Xn is a sample from the Bernoulli(p) distribution, i.e.,
X1, . . . ,Xn are independent realizations, where each Xi takes the value 1 or
0 with probabilities p and 1 − p, respectively. The random variable Y =
X1+· · ·+Xn equals the number of 1�s in the sample and follows a Binomial(n, p)
distribution. Therefore, Y can take on any of the values 0, 1, . . . , n with posi-
tive probability. In fact, an exact formula can be derived for these probabilities,

95
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namely, P (Y = k) =
¡
n
k

¢
pk(1−p)n−k is the probability that Y takes the value k

for 0 ≤ k ≤ n. When n and k are small, this formula could be used to evaluate
this probability, but it is almost always better to use software like Minitab to do
it, and when these values are not small, it is necessary. Also, we can use Minitab
to compute the Binomial(n, p) cumulative probability distribution�the prob-
ability contents of intervals (−∞, x] and the inverse cumulative distribution�
quantiles of the distribution.

For individual probabilities, we use the C
¯
alc I Probability D

¯
istributions I

B
¯
inomial command. For example, suppose we have a Binomial(30, .2) distri-
bution and want to compute the probability P (Y = 10). This command, with
the dialog box as in Display 5.1.1, produces the output (note Minitab uses the
notation p instead of p for the probability of success)

Binomial with n = 30 and p = 0.200000

x P( X = x )

10.00 0.0354709

in the Session window, i.e., P (Y = 10) = 0.0354709.

Display 5.1.1: Dialog box for Binomial(n, p) probability calculations.

If we want to compute the probability of getting 10 or fewer successes (this
is the probability of the interval (−∞, 10]) we can use the C

¯
alc I Probability

D
¯
istributions I B

¯
inomial command with the dialog box as in Display 5.1.2.

This produces the output

Binomial with n = 30 and p = 0.200000

x P( X <= x )

10.00 0.974384

in the Session window, i.e., P (Y ≤ 10) = 0.974384.
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Display 5.1.2: Dialog box for computing cumulative probabilities for the

Binomial(n, p) distribution.

Suppose we want to compute the Þrst quartile of this distribution. The C
¯
alc

I Probability D
¯
istributions I B

¯
inomial command, with the dialog box as in

Display 5.1.3, produces the output

Binomial with n = 30 and p = 0.200000
x P( X <= x ) x P( X <= x )
3 0.122711 4 0.255233

in the Session window. This gives the values x that have cumulative probabilities
just smaller and just larger than the value requested. Recall that with a discrete
distribution, such as the Binomial(n, p), we will not in general be able to obtain
an exact quantile.

Display 5.1.3 Dialog box for computing percentiles of the Binomial(n, p)
distribution.

These commands can operate on all the values in a column simultaneously.
This is very convenient if you should want to tabulate or graph the probability
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function, cumulative distribution function, or inverse distribution function.
The corresponding session commands are pdf (for calculating the probability

function), cdf (for calculating the cdf), and invcdf (for calculating the inverse
cdf) used with the binomial subcommand. For example,

MTB > pdf 10;
SUBC> binomial 30 .2.

outputs P (Y = 10) when Y has the Binomial(30, .2) distribution.

5.2 Simulating Sampling Distributions

First, we consider an example where we know the exact sampling distribution.
Suppose we ßip a possibly biased coin n times and want to estimate the unknown
probability p of getting a head. The natural estimate is �p the proportion of heads
in the sample. We would like to assess the sampling behavior of this statistic
in a simulation. To do this, we choose a value for p, then generate N samples
from the Bernoulli distribution of size n, for each of these compute �p, look at
the empirical distribution of these N values, perhaps plotting a histogram as
well. The larger N is the closer the empirical distribution and histogram will
be to the true sampling distribution of �p.

Note that there are two sample sizes here: the sample size n of the original
sample the statistic is based on, which is Þxed, and the simulation sample sizeN ,
which we can control. This is characteristic of all simulations. Sometimes, using
more advanced analytical techniques we can determine N so that the sampling
distribution of the statistic is estimated with some prescribed accuracy. Some
techniques for doing this are discussed in later chapters of IPS. Another method
is to increase N until we see the results stabilize. This is sometimes the only
way available, but caution should be shown as it is easy for simulation results
to be very misleading if the Þnal N is too small.
We illustrate a simulation to determine the sampling distribution of �p when

sampling from a Bernoulli(.75) distribution. For this, we use the commands C
¯
alc

I R
¯
andom Data I Be

¯
rnoulli, C

¯
alc I Ro

¯
w Statistics, and S

¯
tat I T

¯
ables I Ta

¯
lly,

with the dialog boxes given by Displays 5.2.1, 5.2.2, and 5.2.3, respectively, to
produce the output

Summary Statistics for Discrete Variables
C11 CumPct
0.3 0.40
0.4 2.20
0.5 7.60
0.6 23.10
0.7 47.70
0.8 78.00
0.9 94.70
1.0 100.00
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in the Session window. Here we have generated N = 1000 samples of size n = 10
from the Bernoulli(.75) distribution, i.e., we simulated the tossing of this coin
10,000 times, and we placed the results in the rows of columns C1�C10 using
C
¯
alc I R

¯
andom Data I Be

¯
rnoulli. The proportion of heads �p in each sample

is computed and placed in C11 using C
¯
alc I Ro

¯
w Statistics. Note that a mean

of values equal to 0 or 1 is just the proportion of 1�s in the sample. Finally, we
used S

¯
tat I T

¯
ables I Ta

¯
lly to compute the empirical distribution function of

these 1000 values of �p. For example, this says 78% of these values were .8 or
smaller and there were no instances smaller than .3. In Display 5.2.4, we have
plotted a density histogram of the 1000 values of �p and this gives a rough idea
of the shape of the sampling distribution.

Display 5.2.1: Dialog box for generating 10 columns of 1000 Bernoulli(.75) values.

Display 5.2.2: Dialog box for computing the proportion of 1�s in each of the 1000

samples of size 10.
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Display 5.2.3: Dialog box for computing the empirical distribution function of �p.

Display 5.2.4: Density histogram of simulation of N = 1000 values of �p based on a
sample of size n = 10 from the Bernoulli(.75) distribution.

The corresponding session commands for this simulation are

MTB > random 1000 c1-c10;
SUBC> bernoulli .75.
MTB > rmean c1-c10 c11
MTB > tally c11;
SUBC> cumpcts.

and these might seem like an easier way to implement the simulation.
In Chapter 5 of IPS, we saw that the sampling distribution of �p can be

determined exactly, i.e., there are formulas to determine this, so really there is
no need for a simulation in this case. Still, it illustrates how such a simulation
proceeds in more general circumstances.
Furthermore, we can simulate directly from the sampling distribution of �p,

so this simulation can be made much more efficient. In effect, this entails using
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the C
¯
alc I R

¯
andom Data I Binomial command with dialog box as in Display

5.2.5 and dividing each entry in C1 by 10. This generates N = 1000 values of
�p but uses a much smaller number of cells. Still, there are many statistics for
which this kind of efficiency reduction is not available, and, to get some idea of
what their sampling distribution is like, we must resort to the more brute force
form of simulation of generating directly from the population distribution.
Sometimes, more sophisticated simulation techniques are needed to get an

accurate assessment of a sampling distribution. Within Minitab, there are pro-
gramming techniques, which we do not discuss in this manual, that can be
applied in such cases. For example, it is clear that if our simulation required
the generation of 106 cells (and this is not at all uncommon for some harder
problems), the simulation approach we have described would not work within
Minitab, as the worksheet would be too large. See Appendix D for a discussion
of how such simulations can proceed in Minitab.

Display 5.2.5: Dialog box for generating 1000 values from the sampling distribution

of 10�p using the Binomial(10, .75) distribution.

5.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
If your version of Minitab places restrictions such that the value of the sim-

ulation sample size N requested in these problems is not feasible, then substitute
a more appropriate value. Be aware, however, that the accuracy of your results
is dependent on how large N is.

1. Calculate all the probabilities for the Binomial(5, .4) distribution and the
Binomial(5, .6) distribution. What relationship do you observe? Can you
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explain this and state a general rule?

2. Compute all the probabilities for a Binomial(5, .8) distribution and use
these to directly calculate the mean and variance. Verify your answers
using the formulas provided in IPS.

3. Compute and plot the probability and cumulative distribution functions
of the Binomial(10, .2) and the Binomial(10, .5) distributions. Comment
on the shapes of these distributions.

4. Generate 1000 samples of size 10 from the Bernoulli(.3) distribution. Com-
pute the proportion of 1�s in each sample and compute the proportion of
samples having no 1�s, one 1, two 1�s, etc. Compute what these propor-
tions would be in the longrun and compare.

5. Carry out a simulation study with N = 1000 of the sampling distribution
of �p for n = 5, 10, 20 and for p = .5, .75, .95. In particular, calculate the
empirical distribution functions and plot the histograms. Comment on
your Þndings.

6. Suppose thatX1,X2, . . . are independent realizations from the Bernoulli(p)
distribution, i.e., each Xi takes the value 1 or 0 with probabilities p
and 1 − p, respectively. If the random variable Y counts the number
of tosses until we obtain the Þrst head in a sequence of independent tosses
X1,X2,X3, . . . , then Y has a Geometric(p) distribution. Minitab does not
have built-in algorithms for computing the probability function, distribu-
tion function, inverse distribution function, and for generating from this
distribution. The probability function for this distribution is given by

P (Y = y) = (1− p)y−1 p
for y = 1, 2, . . . . Plot the probability function for the Geometric(.5) dis-
tribution for the values y = 1, . . . , 10. Do the same for the Geometric(.1)
distribution. What do you notice?

7. Using methods for summing geometric sums, the cumulative distribution
function of the Geometric(p) distribution (see Exercise II.5.6) is given by
P (Y ≤ y) = 1−(1− p)y. Plot the cumulative distribution function for the
Geometric(.5) and Geometric(.1) distribution for the values y = 1, . . . , 10.
What do you notice?

8. To randomly generate from the Geometric(p) distribution (see Exercise
II.5.6), we can repeatedly generate from a Bernoulli(p) and count how
many times we did this until the Þrst 1 appeared. A simple way to do
this in Minitab is to generate N values from the Bernoulli(p) into a col-
umn. Count the number of entries until the Þrst 1, count the number
of subsequent entries until the next 1, etc. These counts are identically
and independently distributed according to the Geometric(p) distribution.
This is a very inefficient method when p is small and much better algo-
rithms exist. Generate a sample of 10 from the Geometric(.5) distribution.
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9. Carry out a simulation study, with N = 2000, of the sampling distribution
of the sample standard deviation when sampling from the N(0, 1) distri-
bution, based on a sample of size n = 5. In particular, plot the histogram
using cutpoints 0, 1.5, 2.0 2.5, 3.0 5.0. Repeat this for the sample coeffi-
cient of variation (sample standard deviation divided by the sample mean)
using the cutpoints −10, −9, ..., 0, ..., 9, 10. Comment on the shapes of
the histograms relative to a N(0, 1) density curve.

10. Generate N = 1000 samples of size n = 5 from the N(0, 1) distribution.
Record a histogram for x̄ using the cutpoints −3,−2.5,−2, ..., 2.5, 3.0.
Generate a sample of size N = 1000 from the N(0, 1/

√
5) distribution.

Plot the histogram using the same cutpoints and compare the histograms.
What will happen to these histograms as we increase N?

11. Generate N = 1000 values of X1,X2, where X1 follows a N(3, 2) distri-
bution and X2 follows a N(−1, 3) distribution. Compute Y = X1 − 2X2
for each of these pairs and plot a histogram for Y using the cutpoints
−20,−15, ..., 25, 30. Generate a sample of N = 1000 from the appropriate
distribution of Y and plot a histogram using the same cutpoints.

12. Plot the density curve for the Exponential(3) distribution (see Exercise
II.4.7) between 0 and 15 with an increment of .1. Generate N = 1000
samples of size n = 2 from the Exponential(3) distribution and record the
sample means. Standardize the sample of x̄ using µ = 3 and σ = 3. Plot
a histogram of the standardized values using the cutpoints −5, −4, ..., 4,
5. Repeat this for n = 5, 10. Comment on the shapes of these histograms.

13. Plot the density of the uniform distribution on (0,1). Generate N = 1000
samples of size n = 2 from this distribution. Standardize the sample of x̄
using µ = .5 and σ =

p
1/12. Plot a histogram of the standardized values

using the cutpoints −5,−4, ..., 4, 5. Repeat this for n = 5, 10. Comment
on the shapes of these histograms.

14. The Weibull(β) has density curve given by βxβ−1e−x
β

for x > 0, where
β > 0 is a Þxed constant. Plot the Weibull(2) density in the range 0 to
10 with an increment of .1 using the C

¯
alc I Probability

¯
Distributions

I W
¯
eibull, command. Generate a sample of N = 1000 from this distri-

bution using the subcommand C
¯
alc I R

¯
andom Data I W

¯
eibull where β

is the Shape parameter and the Scale parameter is 1. Plot a probability
histogram and compare with the density curve.
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Chapter 6

Introduction to Inference

New Minitab commands discussed in this chapter

S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
P
¯
ower and Sample Size I 1-Sample Z

¯

In this chapter, the basic tools of statistical inference are discussed. There
are a number of Minitab commands that aid in the computation of conÞdence
intervals and for carrying out tests of signiÞcance.

6.1 z ConÞdence Intervals

The command S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
computes conÞdence inter-

vals of the form x̄± z(1+γ)/2σ0/
√
n, where γ is prescribed (often γ = 0.95), σ0

is known, x̄ and n are obtained from the data, and zα is the α-th percentile of
the N(0, 1) distribution.
Consider the sample given by (0.8403, 0.8363, 0.8447) , which are stored in

C1, and suppose that it makes sense to take σ0 = .0068. The command S
¯
tat

I B
¯
asic Statistics I 1-Sample Z

¯
with the dialog boxes as in Displays 6.1.1 and

6.1.2 produces the output

Variable N Mean StDev SE Mean
C1 3 0.840433 0.004202 0.003926

99.0% CI
(0.830321, 0.850546)

in the Session window. This speciÞes (0.83032, 0.85055) as a 99% conÞdence
interval for µ. Note that in the dialog box of Display 6.1.1, we specify where the
data resides in the Samples in Columns box, the value of σ0 in the Standard
deviation box, and clicked on the Options button to bring up the dialog box in
Display 6.1.2. In this dialog box we have speciÞed the 99% conÞdence level in
the ConÞdence level box.
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Display 6.1.1: First dialog box for producing the z conÞdence interval for µ.

Display 6.1.2: Second dialog box for producing the z conÞdence interval. Here we
specify the conÞdence level.

The corresponding session command zinterval is

zinterval V1 sigma = V2 E1 . . .Em

where V1 is the conÞdence level and is any value between 1 and 99.99, V2 is
the assumed value of σ, and E1, ..., Em are columns of data. A V1% conÞdence
interval is produced for each column speciÞed. If no value is speciÞed for V1,
the default value is 95%.

6.2 z Tests

The S
¯
tat I B

¯
asic Statistics I 1-Sample Z

¯
command is used when we want to as-

sess hypotheses about the unknown mean µ. Suppose the sample (2.0, 0.4, 0.7, 2.0,
−0.4, 2.2,−1.3, 1.2, 1.1, 2.3) is stored in C1, and we are asked to assess the null
hypothesis H0 : µ = 0 and we know that σ0 = 1. The S

¯
tat I B

¯
asic Statistics I



Introduction to Inference 107

1-Sample Z
¯
command, together with the dialog box of Display 6.2.1, where we

speciÞed where the data is located, the value of σ0, and that we want to test
H0 : µ = 0 by placing 0 in the Test mean box, produces the following output.

Variable N Mean StDev SE Mean 99% CI
C1 10 1.02000 1.19610 0.31623 (0.20545, 1.83455)
Z P

3.23 0.001

This gives the value of z = 3.23 for the z statistic and the P-value equal to
0.001. This is strong evidence against H0 : µ = 0.

Display 6.2.1: Dialog box for assessing the hypothesis H0 : µ = 0 using a z test.

Sometimes it is preferred to assess a one-sided hypothesis such as H0 : µ ≤
µ0. In this case, the relevant P-value is P (Z > (x̄ − µ0)/(σ0/

√
n)) = 1 −

Φ ((x̄− µ0)/(σ0/√n)) . Minitab also has the facility for assessing hypotheses
such as H0 : µ ≤ µ0 or H0 : µ ≥ µ0.
Suppose, for the above sample, we are asked to assess the null hypothesis

H0 : µ ≤ 0 and we know σ = 1. The S
¯
tat I B

¯
asic Statistics I 1-Sample

Z
¯
command, together with the dialog boxes of Displays 6.2.1 and 6.2.2 (the

greater than refers to the values for which the null hypothesis is false), produces
the output

Variable N Mean StDev SE Mean
C1 10 1.02000 1.19610 0.31623
99.0% Lower Bound Z P

0.28434 3.23 0.001

in the Session window. This speciÞes the P-value for this test as .001, so we
have evidence against the null hypothesis. We obtained the dialog box in Display
6.2.2 by clicking on the Options button Display 6.2.1. Here we speciÞed that
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we want to test the null hypothesis H0 : µ ≤ 0 by selecting �greater than� in
the Alternative box. The other choices are �not equal,� which selects the null
hypothesis H0 : µ = 0 (the default), and �less than,� which selects the null
hypothesis H0 : µ ≥ 0.

Display 6.2.2: Dialog box for specifying the kind of test when using a z test.

Note that the P-values for assessing H0 : µ = 0 and H0 : µ ≤ 0 are both
given as 0.001 in the Minitab output, but these have been rounded from the
actual values 0.000619 and 0.001238, respectively. In fact, the P-value for the
one-sided test is always bigger than the P-value for the point hypothesis.
The general syntax of the corresponding session command ztest is

ztest V1 sigma = V2 E1 . . .Em

where V1 is the hypothesized value to be tested, V2 is the assumed value of σ,
and E1, ..., Em are columns of data. If no value is speciÞed for V1, the default is
0. A P-value for the hypothesis is computed for each column. If no alternative
subcommand is speciÞed, the P-value for H0 : µ = V1 is computed. If the
subcommand

SUBC> alternative 1.

is used, the P-value for H0 : µ ≤ V1 is computed. If the subcommand
SUBC> alternative -1.

is used, the P-value for H0 : µ ≥ V1 is computed.

6.3 Simulations for ConÞdence Intervals

When we are sampling from a N(µ, σ) distribution and know the value of σ,
the conÞdence intervals constructed in Section 6.1 are exact, i.e., in repeated
sampling, the long run proportion of the 95% conÞdence intervals constructed
for an unknown mean µ that will contain the true value of this quantity, is equal
to 95%. Of course, any given conÞdence interval may or may not contain the
true value of µ, and, in any Þnite number of such intervals so constructed, some
proportion other than 95% will contain the true value of µ. As the number of
intervals increases, however, the proportion covering will go to 95%.
We illustrate this via a simulation study based on computing 90% conÞdence

intervals. The session commands
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MTB > random 100 c1-c5;
SUBC> normal 1 2.
MTB > rmean c1-c5 c6
MTB > invcdf .95;
SUBC> normal 0 1.
Normal with mean = 0 and standard deviation = 1.00000
P( X <= x) x
0.9500 1.6449
MTB > let k1=1.6449*2/sqrt(5)
MTB > let c7=c6-k1
MTB > let c8=c6+k1
MTB > let c9=c7<1 and c8>1
MTB > mean c9
Mean of C9 = 0.91000
MTB > set c10
DATA> 1:25
DATA> end
MTB > delete 26:100 c7 c8

generate 100 random samples of size 5 from the N(1, 2) distribution, place the
means in C6, the lower end-point of a 90% conÞdence interval in C7, and the
upper end-point in C8, and record whether or not a conÞdence interval covers
the true value µ = 1 by placing a 1 or 0 in C9, respectively. The mean of C9
is the proportion of intervals that cover, and this is 91%, which is 1% too high.
Finally, we plotted the Þrst 25 of these intervals in a plot shown in Display 6.3.1
(note we use the features available in Minitab for producing multiple scatterplots
on the same plot to produce this plot). Drawing a solid horizontal line at 1 on
the y-axis indicates that most of these intervals do indeed cover the true value
µ = 1 (the 2nd, 4th, 15th and 21st intervals do not contain 1).

Display 6.3.1: Plot of 90% conÞdence intervals for the mean when sampling from the

N(1, 2) distribution with n = 5. The lower end-point is denoted by ◦ and the upper
end-point is denoted by �.
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The simulation just carried out simply veriÞes a theoretical fact. On the
other hand, when we are computing approximate conÞdence intervals�i.e., we
are not sampling necessarily from a normal distribution�it is good to do some
simulations from various distributions to see how much reliance we can place
in the approximation at a given sample size. The true coverage probability of
the interval, i.e., the long-run proportion of times that the interval covers the
true mean, will not in general be equal to the nominal conÞdence level. Small
deviations are not serious, but large ones are.

6.4 Power Calculations

It is also useful to know in a given context how sensitive a particular test of
signiÞcance is. By this, we mean how likely it is that the test will lead us to
reject the null hypothesis when the null hypothesis is false. This is measured by
the concept of the power of a test. Typically, a level α is chosen for the P-value
at which we would deÞnitely reject the null hypothesis if the P-value is smaller
than α. For example, α = .05 is a common choice for this level. Suppose
that we have chosen the level of .05 for the two-sided z test and we want to
evaluate the power of the test when the true value of the mean is µ = µ1, i.e.,
evaluate the probability of getting a P-value smaller than .05 when the mean
is µ1. The two-sided z test with level α rejects H0 : µ = µ0 whenever 2(1 −
Φ (|(x̄− µ0)/(σ/√n)|)) ≤ α or, equivalently, whenever |(x̄− µ0)/(σ/√n)| ≥
Φ−1 (1− α/2) = z1−α/2. For example, if α = .05, then 1 − α/2 = .975 (this
quantile can be obtained using the command C

¯
alc I Probability D

¯
istributions

I N
¯
ormal and the inverse distribution function) which gives the output

Normal with mean = 0 and standard deviation = 1.00000
P( X <= x) x

0.9750 1.9600

in the Session window, i.e., the .975 percentile of the N(0, 1) distribution is 1.96.
If µ = µ1, then (x̄ − µ0)/(σ/

√
n) is a realized value from the distribution

of Y = (X̄ − µ0)/(σ/√n) when X̄ ∼ N(µ1, σ/
√
n). Therefore, Y follows a

N((µ1−µ0)/(σ/√n), 1) distribution. The power of the two-sided test at µ = µ1
is then P (|Y | > z1−α/2) and this can be evaluated exactly using the command
C
¯
alc I Probability D

¯
istributions I N

¯
ormal and the distribution function, after

writing

P
¡|Y | > z1−α/2¢ = P (Y > z1−α/2) + P (Y < −z1−α/2)
= P

µ
Z > −(µ1 − µ0)

σ/
√
n

+ z1−α/2

¶
+ P

µ
Z < −(µ1 − µ0)

σ/
√
n

− z1−α/2
¶

with Z ∼ N(0, 1).
Alternatively, exact power calculations can be carried out under the assump-

tion of sampling from a normal distribution using the S
¯
tat I P

¯
ower and Sample

Size I 1-Sample Z
¯
command and Þlling in the dialog box appropriately. Also,

the minimum sample size required to guarantee a given power at a prescribed
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difference |µ1 − µ0| can be obtained using this command. For example, Þlling
in the dialog box for this command as in Display 6.4.1 creates the output

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 1.3
Sample
Difference Size Power
0.1 10 0.0568057
0.2 10 0.0775267

in the Session window. This gives the power for testing H0 : µ = µ0 versus
H0 : µ 6= µ0 at |µ1 − µ0| = .1 and |µ1 − µ0| = .2 when n = 10, σ = 1.3,
and α = .05. These powers are given by 0.0568057 and 0.0775267, respectively.
Clicking on the Op

¯
tions button allows you to choose other alternatives and

specify other values of α in the SigniÞcance level box.

Display 6.4.1: Dialog box for calculating powers and minimum sample sizes.

If we had instead Þlled in Power values at .1 and .2 in the dialog box of
Display 6.4.1, say as .8 and .9, and had left the Sample sizes box empty, we
would have obtained the output

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 1.3
Sample Target Actual
Difference Size Power Power

0.1 1327 0.8000 0.800160
0.1 1776 0.9000 0.900039
0.2 332 0.8000 0.800456
0.2 444 0.9000 0.900039

in the Session window. This prescribes the minimum sample sizes n = 1327
and n = 1776 to obtain the powers .8 and .9, respectively, at the difference
.1 and the sample sizes n = 332 and n = 444 to obtain the powers .8 and .9,
respectively, at the difference .2.
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This derivation of the power of the two-sided test depended on the sample
coming from a normal distribution, as this leads to X̄ having an exact normal
distribution. In general, however, X̄ will be only approximately normal, so the
normal calculation for the power is not exact. To assess the effect of the nonnor-
mality, however, we can often simulate sampling from a variety of distributions
and estimate the probability P (|Y | > z1−α/2). For example, suppose that we
want to test H0 : µ = 0 in a two-sided z test based on a sample of 10, where
we estimate σ by the sample standard deviation and we want to evaluate the
power at 1. Let us further suppose that we are actually sampling from a uni-
form distribution on the interval (−10, 12), which indeed has its mean at 1. The
simulation given by the session commands

MTB > random 1000 c1-c10;
SUBC> uniform -10 12.
MTB > rmean c1-c10 c11
MTB > rstdev c1-c10 c12
MTB > let c13=absolute(c11/(c12/sqrt(10)))
MTB > let c14=c13>1.96
MTB > let k1=mean(c14)
MTB > let k2=sqrt(k1*(1-k1)/n(c14))
MTB > print k1 k2
K1 0.112000
K2 0.00997276

estimates the power to be .112, and the standard error of this estimate, as
given in K2, is approximately .01. The application determines whether or not
the assumption of a uniform distribution makes sense and whether or not this
power is indicative of a sensitive test or not.

6.5 The Chi-Square Distribution

If Z is distributed according to the N(0, 1) distribution, then Y = Z2 is dis-
tributed according to the Chi-square(1) distribution. If X1 is distributed Chi-
square(k1) independent of X2 distributed Chi-square(k2), then Y = X1+X2 is
distributed according to the Chi-square(k1+k2) distribution. There are Minitab
commands that assist in carrying out computations for the Chi-square(k) dis-
tribution. Note that k is any positive value and is referred to as the degrees of
freedom.
The values of the density curve for the Chi-square(k) distribution can be

obtained using the C
¯
alc I Probability D

¯
istributions I C

¯
hi-Square command,

with k as the D
¯
egrees of freedom in the dialog box, or the session command pdf

with the subcommand chisquare. For example, the command

MTB > pdf c1 c2;
SUBC> chisquare 4.

calculates the value of the Chi-square(4) density curve at each value in C1 and
stores these values in C2. This is useful for plotting the density curve. The C

¯
alc
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I Probability D
¯
istributions I C

¯
hi-Square command, or the session commands

cdf and invcdf, can also be used to obtain values of the Chi-square(k) cumu-
lative distribution function and inverse distribution function, respectively. We
use the C

¯
alc I R

¯
andom Data I C

¯
hi-Square command, or the session command

random, to obtain random samples from these distributions.
We will see applications of the chi-square distribution later in the book but

we mention one here. In particular, if x1, . . . , xn is a sample from a N(µ, σ)

distribution, then (n− 1) s2/σ2 =Pn
i=1 (xi − x̄)2 /σ2 is known to follow a Chi-

square(n − 1) distribution, and this fact is used as a basis for inference about
σ (conÞdence intervals and tests of signiÞcance). Because of the nonrobustness
of these inferences to small deviations from normality, these inferences are not
recommended.

6.6 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
If your version of Minitab places restrictions such that the value of the sim-

ulation sample size N requested in these problems is not feasible, then substitute
a more appropriate value. Be aware, however, that the accuracy of your results
is dependent on how large N is.

1. (6.19) Use the S
¯
tat I B

¯
asic Statistics I 1- Sample Z

¯
command to compute

90%, 95%, and 99% conÞdence intervals for µ.

2. (6.19) Use the S
¯
tat I B

¯
asic Statistics I 1- Sample Z

¯
command to test the

null hypothesis against the appropriate alternative. Evaluate the power
of the test with level α = .05 at µ = 225.

3. Simulate N = 1000 samples of size 5 from the N(1, 2) distribution, and
calculate the proportion of .90 z conÞdence intervals for the mean that
cover the true value µ = 1.

4. Simulate N = 1000 samples of size 10 from the uniform distribution on
(0,1), and calculate the proportion of .90 z conÞdence intervals for the
mean that cover the true value µ = .5. Use σ = 1/

√
12.

5. Simulate N = 1000 samples of size 10 from the Exponential(1) distribu-
tion (see Exercise II.4.7), and calculate the proportion of .95 z conÞdence
intervals for the mean that cover the true value µ = 1. Use σ = 1.

6. The density curve for the Student(1) distribution takes the form

1

π

1

1 + x2
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for −∞ < x <∞. This special case is called the Cauchy distribution. Plot
this density curve in the range (−20, 20) using an increment of .1. Simulate
N = 1000 samples of size 5 from the Student(1) distribution (see Exercise
II.4.12), and calculate the proportion of .90 conÞdence intervals for the
mean, using the sample standard deviation for σ, that cover the value
µ = 0. It is possible to obtain very bad approximations in this example
because the central limit theorem does not apply to this distribution. In
fact, it does not have a mean.

7. Suppose we are testing H0 : µ = 3 versusH0 : µ 6= 3 when we are sampling
from a N (µ, σ) distribution with σ = 2.1 and the sample size is n = 20.
If we use the critical value α = .01, determine the power of this test at
µ = 4.

8. Suppose we are testing H0 : µ = 3 versus H0 : µ > 3 when we are
sampling from a N (µ, σ) distribution with σ = 2.1. If we use the critical
value α = .01, determine the minimum sample size so that the power of
this test at µ = 4 is .99.

9. The uniform distribution on the interval (a, b) has mean µ = (a+ b) /2

and standard deviation σ =

q
(b− a)2 /12. Calculate the power at µ = 1

of the two-sided z test at level α = .95 for testing H0 : µ = 0 when the
sample size is n = 10, σ is the standard deviation of a uniform distribution
on (−10, 12), and we are sampling from a normal distribution.

10. Suppose that we are testing H0 : µ = 0 in a two-sided test based on
a sample of 3. Approximate the power of the z test at level α = .1 at
µ = 5 when we are sampling from the distribution of Y = 5 +W, where
W follows a Student(6) distribution (see Exercise II.4.12) and we use the
sample standard deviation to estimate σ. Note that the mean of the
distribution of Y is 5.
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Inference for Distributions

New Minitab commands discussed in this chapter

C
¯
alc I Probability D

¯
istributions I F

¯
C
¯
alc I Probability D

¯
istributions I t

¯
C
¯
alc I R

¯
andom Data I F

¯C
¯
alc I R

¯
andom Data I t

¯
P
¯
ower and Sample Size I 1

¯
-Sample t

P
¯
ower and Sample Size I 2

¯
-Sample t

S
¯
tat I B

¯
asic Statistics I 1

¯
-Sample t

S
¯
tat I B

¯
asic Statistics I 2

¯
-Sample t

S
¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign

7.1 The Student Distribution

If Z is distributed N(0, 1) independent of X distributed Chi-square(k) (see
II.6.5), then T = Z/

p
X/k is distributed according to the Student(k) distri-

bution. The value k is referred to as the degrees of freedom of the Student
distribution. There are Minitab commands that assist in carrying out compu-
tations for this distribution.
The values of the density curve, distribution function, and inverse distribu-

tion function for the Student(k) distribution can be obtained using the C
¯
alc

I Probability D
¯
istributions I t

¯
command with k as the D

¯
egrees of freedom.

Alternatively, we can use the session commands pdf, cdf, and invcdf with the
student subcommand. For example, the command

MTB > pdf c1 c2;
SUBC> student 4.

calculates the value of the Student(4) density curve at each value in C1 and
stores these values in C2. This is useful for plotting the density curve. To

115
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generate from this distribution we use the command C
¯
alc I R

¯
andom Data I t

¯
again with k as the Degrees of freedom or use the session command random
with the student subcommand.

7.2 t ConÞdence Intervals

When sampling from the N(µ, σ) distribution with µ and σ unknown, an exact
1 − α conÞdence interval for µ based on the sample x1, . . . , xn is given by x̄ ±
t∗s/

√
n, where t∗ is the 1 − α/2 percentile of the Student(n − 1) distribution.

These intervals can be obtained using the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample

t command.
For example, suppose that we have the following sample of n = 10 in C1.

0.44 4.19 0.22 4.23 1.46
3.98 2.29 1.79 6.09 3.04

Then the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample t command, with the dialog box

as in Display 7.2.1, produces the output

Variable N Mean StDev SE Mean 95% CI
C1 10 2.77300 1.87218 0.59204 (1.43372, 4.11228)

in the Session window. This computes a 95% conÞdence interval for µ as
(1.43372, 4.11228). To change the conÞdence level, click on the Options but-
ton and Þll in the subsequent dialog box appropriately.

Display 7.2.1: Dialog box for producing t conÞdence intervals.

The general syntax of the corresponding session command tinterval is

tinterval V E1 . . .Em

where V is the conÞdence level and is any value between 1 and 99.99 and E1, ...,
Em are columns of data. A V% conÞdence interval is produced for each column
speciÞed. If no value is speciÞed for V, the default value is 95%.
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7.3 t Tests

The S
¯
tat I B

¯
asic Statistics I 1

¯
-Sample t command is used when we have

a sample x1, . . . , xn from a normal distribution with unknown mean µ and
standard deviation σ and we want to test the hypothesis that the unknown
mean equals a value µ0. The test is based on computing a P -value using the
observed value of

t =
x̄− µ0
s/
√
n

and the Student(n− 1) distribution as described in IPS.
For example, suppose we want to test H0 : µ = 3 for the data presented in

Section 7.2. Then the S
¯
tat I B

¯
asic Statistics I 1

¯
- Sample t command, with the

dialog box as in Display 7.3.1, produces the output

Test of mu = 3 vs not = 3
Variable N Mean StDev SE Mean
C1 10 2.77300 1.87218 0.59204

95% CI T P
(1.43372, 4.11228) -0.38 0.710

so we have the P -value as 0.710 and we have no evidence against H0 : µ = 3. To
assess other hypotheses click on the Options button and Þll in the subsequent
dialog box appropriately.

Display 7.3.1: First dialog box for a test of hypothesis using the t statistic.

The general syntax of the corresponding session command ttest is

ttest V E1 . . .Em

where V is the hypothesized value to be tested and E1, ..., Em are columns of
data. If no value is speciÞed for V, the default is 0. A test of the hypothesis
is carried out for each column. Also, the alternative subcommand is available
and works just as with the ztest command.
Note that the S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample t command can also be

used to carry out t tests for the difference of two means in a matched pairs
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design. For this, store the difference of the measurements in a column and
apply S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample t to that column as shown previously.

Exact power calculations can be carried under the assumption of sampling
from a normal distribution using P

¯
ower and Sample Size I 1-Sample t and Þlling

in the dialog box appropriately. Further, the minimum sample size required
to guarantee a given power at a prescribed difference |µ1 − µ0| and standard
deviation σ can be obtained using this command. For example, using this
command with the dialog box as in Display 7.3.2, we obtain the output

Testing mean = null (versus not = null)
Calculating power for mean = null + difference
Alpha = 0.05 Sigma = 3
Sample
Difference Size Power

2 5 0.2113

in the Session window. This gives the exact power of the two-sided t test when
n = 5, |µ1 − µ0| = 2, σ = 3.0, and α = .05 as .2113. The Options button can be
used to compute power for one-sided tests.

Display 7.3.2: Dialog box for determining power and minimum sample sizes when

using the one sample t test.

7.4 The Sign Test

As discussed in IPS, sometimes we cannot sensibly assume normality or trans-
form to normality or make use of large samples so that there is a central limit
theorem effect. In such a case, we attempt to use distribution free or nonpara-
metric methods. The testing method based on the sign test statistic for the
median is one of these.
For example, suppose we have the data of Section 7.2 stored in column

C1. Then the S
¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign command produces the
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dialog box given in Display 7.4.1. Here we have Þlled in the ConÞdence interval
button, and in the Level box we have requested a .95 conÞdence interval for the
median. The following output is obtained.

Sign confidence interval for median
Confidence

Achieved Interval
N Median Confidence Lower Upper Position

C1 10 2.665 0.8906 1.460 4.190 3
0.9500 1.111 4.204 NLI
0.9785 0.440 4.230 2

As the distribution of the sign statistic is discrete, in general the exact conÞdence
cannot be attained, so Minitab records the conÞdence intervals with conÞdence
level just smaller and just greater than the conÞdence level requested and also
records a middle interval obtained by interpolation.

Display 7.4.1: Dialog box for the sign test and the sign conÞdence interval.

If instead we Þll in the Test median button and enter 4.0 for the null hy-
pothesis with the Alternative not equal, we obtain the output

Sign test of median = 4.000 versus not = 4.000
N Below Equal Above P Median

C1 10 7 0 3 0.3438 2.665

which gives the P -value as 0.3438 for assessing the hypothesis that the median
of the population distribution equals 4.0. Also, the sample median of 2.665 is
recorded.
Note that the S

¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign command can also

be used to construct conÞdence intervals and carry out tests for the median
of a difference in a matched pairs design. For this, store the difference of the
measurements in a column and apply the command to that column.
The corresponding session commands are sinterval, for the sign conÞdence

interval and stest, for the sign test. The general syntax of the sinterval com-
mand is
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sinterval V E1 . . .Em

where V is the conÞdence level, and is any value between 1 and 99.99, and E1,
..., Em are columns of data. A V% conÞdence interval is produced for each
column speciÞed. If no value is speciÞed for V, then the default value is 95%.
The general syntax of the stest command is

stest V E1 . . .Em

where V is the hypothesized value to be tested and E1, ..., Em are columns of
data. If no value is speciÞed for V, the default is 0. A test of the hypothesis
is carried out for each column. The alternative subcommand is also available
for one-sided tests.

7.5 Comparing Two Samples

If we have independent samples x11, . . . x1n1 from theN(µ1, σ1) distribution and
x12, . . . x1n2 from the N(µ2, σ2) distribution, where σ1 and σ2 are known, we can
base inferences about the difference of the means µ1−µ2 on the z statistic given
by

z =
x̄1 − x̄2 − (µ1 − µ2)q

σ21
n1
+

σ22
n2

.

Under these assumptions, z has an N(0, 1) distribution. Therefore, a 1 − α
conÞdence interval for µ1 − µ2 is given by

x̄1 − x̄2 ±
s
σ21
n1
+
σ22
n2
z∗

where z∗ is the 1 − α/2 percentile of the N(0, 1) distribution. We can test
H0 : µ = µ0 against the alternative Ha : µ 6= µ0 by computing the P -value
P (|Z| > |z0|) = 2P (Z > z0), where Z is distributed N(0, 1) and z0 is the
observed value of the z statistic. These inferences are also appropriate without
normality, provided n1 and n2 are large and we have reasonable values for σ1
and σ2. These inferences are easily carried out using Minitab commands we have
already discussed.
In general, however, we will not have available suitable values of σ1 and σ2 or

large samples and will have to use the two-sample analogs of the single-sample
t procedures just discussed. This is acceptable, provided, of course, that we
have checked for and agreed that it is reasonable to assume that both samples
are from normal distributions. These procedures are based on the two-sample t
statistic given by

t =
x̄1 − x̄2 − (µ1 − µ2)q

s21
n1
+

s22
n2

where we have replaced the population standard deviations by their sample
estimates. The exact distribution of this statistic does not have a convenient
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form, but, of course, we can always simulate its distribution. Actually, it is
typical to use an approximation to the distribution of this statistic based on
a Student distribution. See the discussion in IPS on this, and use Help to get
more details.
The S

¯
tatI B

¯
asic StatisticsI 2

¯
-Sample t command is available for computing

inference procedures based on t. For example, suppose that we have the data
for Example 7.20 of IPS in a worksheet with the Placebo sample in C1 and the
Calcium sample in C2. The S

¯
tat I B

¯
asic Statistics I 2

¯
-Sample t command

with the dialog box as in Display 7.5.1

Display 7.5.1: Dialog box for two sample problems based on the two-sample t
statistic.

produces the output

Two-sample T for C1 vs C2
N Mean StDev SE Mean

C1 10 5.00 8.74 2.8
C2 11 -0.27 5.90 1.8
Difference = mu (C1) - mu (C2)
Estimate for difference: 5.27273
95% CI for difference: (-1.73509, 12.28054)
T-Test of difference = 0 (vs not =): T-Value = 1.60
P-Value = 0.130 DF = 15

in the Session window. This gives a 95% conÞdence interval for the difference
in the means µ1 − µ2 as (−1.73509, 12.28054) and calculates the P -value .130
for the test of H0 : µ1−µ2 = 0 versus the alternative Ha : µ1−µ2 6= 0. In this
case, we do not reject H0.
Notice we have selected the Samples in different columns radio button, as

this is how we have stored our data. Alternatively, we can store all the actual
measurements in a single column with a second column providing an index of
the sample to which the observation belongs. Clicking on the Op

¯
tions button
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of the dialog box of Display 7.5.1 produces a dialog box where we can prescribe
a different value for the conÞdence level, the difference between the means that
we wish to test for, and the type of hypothesis.
Notice also that, in the dialog box of Display 7.5.1, we have left the box

Assume equal variances unchecked. This box is checked only when we feel that
we can assume that σ1 = σ2 = σ and want to pool both samples together to es-
timate the common σ. Pooling is usually unnecessary and is not recommended.
Exact power calculations can be carried under the assumption of sampling

from a normal distribution using P
¯
ower and Sample Size I 2-Sample t and

Þlling in the dialog box appropriately, although this requires the assumption
of a common population standard deviation σ. Further, the minimum sample
size required to guarantee a given power at a prescribed difference |µ1 − µ2|, and
assuming a common standard deviation σ, can be obtained using this command.
This command works the same as the one sample case.
There are two corresponding session commands�twosample and twot.

Each of these commands computes conÞdence intervals for the difference of the
means and computes P -values for tests of signiÞcance concerning the difference
of means. The only difference between these commands is that with twosample
the two samples are in individual columns, while with twot the samples are in a
single column with subscripts indicating group membership in a second column.
The general syntax of the twosample command is

twosample V E1 E2

where V is the conÞdence level and is any value between 1 and 99.99 and E1,
E2 are columns of data containing the two samples. The general syntax of the
twot command is

twot V E1 E2

where V is the conÞdence level and is any value between 1 and 99.99 and E1,
E2 are columns of data with E1 containing the samples and E2 containing the
subscripts.
The alternative subcommand is available with both twosample and twot

if we wish to conduct one-sided tests. Also, the subcommand pooled is available
if we feel we can assume that σ1 = σ2 = σ and want to pool both samples
together to estimate the common σ.

7.6 The F Distribution

IfX1 is distributed Chi-square(k1) independent ofX2 distributed Chi-square(k2),
then

F =
X1/k1
X2/k2

is distributed according to the F (k1, k2) distribution. The value k1 is called
the numerator degrees of freedom and the value k2 is called the denominator
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degrees of freedom. There are Minitab commands that assist in carrying out
computations for this distribution.
The values of the density curve for the F (k1, k2) distribution can be obtained

using the C
¯
alc I Probability D

¯
istributions I F

¯
command, with k1 speciÞed as

the Numerator degrees of freedom and k2 speciÞed as the Denominator degrees
of freedom in the dialog box. For example, this command with the dialog box
as in Display 7.6.1 produces the output

x P( X <= x )
5.0000 0.828826

in the Session window. This calculates the value of the F (3, 2) distribution
function at 5 as .8288. Alternatively, you can use the session commands pdf,
cdf, and invcdf with the F subcommand. The C

¯
alc I R

¯
andom Data I F

¯
command and the session command random with the F subcommand can be
used to obtain random samples from the F (k1, k2) distribution.

Display 7.6.1: Dialog box for probability calculations for the F (k1, k2) distribution.

There are a number of applications of the F -distribution. In particular,
if x11, . . . x1n1 is a sample from the N(µ1, σ1) distribution and x12, . . . x1n2 a
sample from the N(µ2, σ2) distribution, then

F =
s21/σ

2
1

s22/σ
2
2

is known to follow an F (n1−1, n2−1). This fact is used as a basis for inference
about the ratio σ1/σ2, i.e., conÞdence intervals and tests of signiÞcance and,
in particular, testing for equality of variances between the samples. Because of
the nonrobustness of these inferences to small deviations from normality, these
inferences are not recommended.
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7.7 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
If your version of Minitab places restrictions such that the value of the sim-

ulation sample size N requested in these problems is not feasible, then substitute
a more appropriate value. Be aware, however, that the accuracy of your results
is dependent on how large N is.

1. Plot the Student(k) density curve for k = 1, 2, 10, 30 and the N(0, 1) den-
sity curve on the interval (−10, 10) using an increment of .1 and compare
the plots.

2. Make a table of the values of the cumulative distribution function of the
Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1) distribution at
the points −10,−5,−3,−1, 0, 1, 3, 5, 10. Comment on the values.

3. Make a table of the values of the inverse cumulative distribution function of
the Student(k) distribution for k = 1, 2, 10, 30 and the N(0, 1) distribution
at the points .0001, .001, .01, .1, .25, .5. Comment on the values.

4. Simulate N = 1000 values from Z distributed N(0, 1) and X distributed
Chi-square(3) and plot a histogram of T = Z/

p
X/3 using the cutpoints

−10,−9, . . . , 9, 10. Generate a sample of N = 1000 values directly from
the Student(3) distribution, plot a histogram with the same cutpoints,
and compare the two histograms.

5. Carry out a simulation with N = 1000 to verify that the 95% conÞdence
interval based on the t statistic covers the true value of the mean 95% of
the time when taking samples of size 5 from the N(4, 2) distribution.

6. Generate a sample of 50 from the N(10, 2) distribution. Compare the 95%
conÞdence intervals obtained via the S

¯
tat I B

¯
asic Statistics I 1

¯
-Sample

t and S
¯
tat I B

¯
asic Statistics I 1- Sample Z

¯
commands using the sample

standard deviation as an estimate of σ.

7. Calculate the power of the t test at µ1 = 1, σ1 = 2 for testing H0 : µ = 0
versus the alternative Ha : µ 6= 0 at level α = .05, based on a sample of 5
from the normal distribution.

8. Simulate the power of the two sample t test at µ1 = 1, σ1 = 2, µ2 = 2, σ1 =
3 for testing H0 : µ1 − µ2 = 0 versus the alternative Ha : µ1 − µ2 6= 0 at
level α = .05, based on a sample of 5 from the N(µ1, σ1) distribution and
a sample of size 8 from the N(µ2, σ2) distribution. Use the conservative
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rule when choosing the degrees of freedom for the approximate test, i.e.,
the smaller of n1 − 1 and n2 − 1.

9. If Z is distributed N(µ, 1) andX is distributed Chi-square(k) independent
of Z, then

Y =
Zp
X/k

is distributed according to a noncentral Student(k) distribution with non-
centrality µ. Simulate samples of N = 1000 from this distribution with
k = 5 and µ = 0, 1, 5, 10. Plot the samples in histograms with cutpoints
−20,−19, . . . , 19, 20 and compare these plots.

10. If X1 is distributed Chi-square(k1) independently of X2, which is dis-
tributed N(δ, 1), then the random variable Y = X1 + X2

2 is distributed
according to a noncentral Chi-square(k+1) distribution with noncentral-
ity λ = δ2. Generate samples of n = 1000 from this distribution with k = 2
and λ = 0, 1, 5, 10. Plot histograms of these samples with the cut-points
0,1, ..., 200. Comment on the appearance of these histograms.

11. If X1 is distributed noncentral Chi-square(k1) with non-centrality λ in-
dependently of X2, which is distributed Chi-square(k2), then the random
variable

Y =
X1/k1
X2/k2

is distributed according to a noncentral F (k1, k2) distribution with non-
centrality λ. Generate samples of n = 1000 from this distribution with
k1 = 2, k2 = 3, and λ = 0, 1, 5, 10. Plot histograms of these samples
with the cut-points 0,1, ..., 200. Comment on the appearance of these
histograms.
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Chapter 8

Inference for Proportions

New Minitab commands discussed in this chapter

P
¯
ower and Sample Size I 1 P

¯
roportion

P
¯
ower and Sample Size I 2 Pr

¯
oportions

S
¯
tat I B

¯
asic Statistics I 1 Pr

¯
oportion

S
¯
tat I B

¯
asic Statistics I 2 Pr

¯
oportions

This chapter is concerned with inference methods for a proportion p and for
the comparison of two proportions p1 and p2. Proportions arise from measuring
a binary-valued categorical variable on population elements, such as gender in
human populations. For example, p might be the proportion of females in a
given population, or we might want to compare the proportion p1 of females in
population 1 with the proportion p2 of females in population 2. The need for
inference arises as we base our conclusions about the values of these proportions
on samples from the populations rather than measuring every element in the
population. For convenience, we will denote the values assumed by the binary
categorical variables as 1 and 0, where 1 indicates the presence of a characteristic
and 0 indicates its absence.

8.1 Inference for a Single Proportion

Suppose that x1, . . . , xn is a sample from a population where the variable is
measuring the presence or absence of some trait by a 1 or 0, respectively. Let �p
be the proportion of 1�s in the sample. This is the estimate of the true proportion
p. For example, the sample could arise from coin tossing, where 1 denotes heads
and 0 tails and �p is the proportion of heads, while p is the probability of heads. If
the population we are sampling from is Þnite, then, strictly speaking, the sample
elements are not independent. But if the population size is large relative to the
sample size n, then independence is a reasonable approximation, and this is

127
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necessary for the methods of this chapter. So we will consider x1, . . . , xn as a
sample from the Bernoulli(p) distribution.
The standard error of the estimate �p is

p
�p(1− �p)/n, and because �p is an

average, the central limit theorem gives that

z =
�p− pq
�p(1−�p)
n

is approximately N(0, 1) for large n. This leads to the approximate 1− α con-
Þdence interval given by �p±p�p(1− �p)/nz∗, where z∗ is the 1−α/2 percentile
of the N(0, 1) distribution. To test a null hypothesis H0 : p = p0, we make use
of the fact that under the null hypothesis the statistic

z =
�p− p0q
p0(1−p0)

n

is approximately N(0, 1). To test H0 : p = p0 versus Ha : p 6= p0, we compute
P (|Z| > |z|) = 2P (Z > |z|), where Z is distributed N(0, 1).
For example, suppose that a coin was tossed n = 4040 times and the ob-

served proportion of heads is x̄ = 2048/4040 = .5069. Then we have thatp
.5069(1− .5069) = 0.49995 and, using the dialog box in Display 8.1.1, we

obtain the output

N Mean SE Mean 95% CI
4040 0.506900 0.007866 (0.491484, 0.522316)

which provides an approximate .95-conÞdence interval for θ.

Display 8.1.1: Dialog box for obtaining conÞdence intervals.

Similarly, if we want to assess the hypothesis H0 : θ = .5, then
p
.5(1− .5) =

0.5 and the dialog box in Display 8.1.2 leads to

Test of mu = 0.5 vs not = 0.5
The assumed standard deviation = 0.5
N Mean SE Mean 95% CI Z P

4040 0.506900 0.007866 (0.491482, 0.522318) 0.88 0.380
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which gives the P -value as 0.380 and so we have no evidence against H0 : θ = .5.
If we wish to use other conÞdence levels or test other hypotheses, then these
options are available using the Options button in the dialog box.

Display 8.1.2: Dialog box for obtaining P -values.

Note that the estimate and conÞdence intervals recorded by the software are
not those based on theWilson estimate discussed in IPS. To obtain the Wilson
estimate and the associated conÞdence interval, we must add four data values
to the data set�two heads (or successes) and two tails (or failures). So in this
case, implementing the above command with the number of trials equal to 4044
and the number of successes equal to 2050 will produce the inferences based on
the Wilson estimate.
Power calculations and minimum sample sizes to achieve a prescribed power

can be obtained using P
¯
ower and Sample Size I 1 P

¯
roportion. For example,

suppose we want to compute the power of the test for H0 : p = .5 versus
Ha : p 6= .5 at level α = .05 at n = 10, p = .4. This command, with the dialog
box as in Display 8.1.3,

Display 8.1.3: Dialog box for power calculations for test of a single proportion.

produces the output
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Testing proportion = 0.5 (versus not = 0.5)
Alpha = 0.05

Alternative Sample
Proportion Size Power
0.400000 10 0.0918

which calculates this power as .0918. So the test is not very powerful. By
contrast, at n = 100, p = .4 the power is .51633.

8.2 Inference for Two Proportions

Suppose that x11, . . . , xn11 is a sample from population 1 and x12, . . . , xn22 is
a sample from population 2, where the variable is measuring the presence or
absence of some trait by a 1 or 0, respectively. We assume then that we have
a sample of n1 from the Bernoulli(p1) distribution and a sample of n2 from the
Bernoulli(p2) distribution. Suppose that we want to make inferences about the
difference in the proportions p1 − p2. Let �pi be the proportion of 1�s in the ith
sample.
The central limit theorem gives that

z =
�p1 − �p2 − (p1 − p2)q
�p1(1−�p1)

n1
+ �p2(1−�p2)

n2

is approximately N(0, 1) for large n1 and n2. This leads to the approximate
1− α conÞdence interval given by

�p1 − �p2 ±
s
�p1(1− �p1)

n1
+
�p2(1− �p2)

n2
z∗

where z∗ is the 1− α/2 percentile of the N(0, 1) distribution. As indicated in
IPS, the Wilson estimate and its corresponding conÞdence interval are obtained
by adding four data values to the data set�one success and one failure to
each sample�so that the ith sample size becomes ni + 2 and the ith sample
estimate becomes (ni�pi + 1) / (ni + 2). The above formula for the conÞdence
interval applied with these changes then gives the interval based on the Wilson
estimates.
To test a null hypothesis H0 : p1 = p2 we use the fact that under the null

hypothesis the statistic

z =
�p1 − �p2r

�p(1− �p)
³
1
n1
+ 1

n2

´
is approximately N(0, 1) for large n1 and n2, where

�p =
n1�p1 + n2�p2
n1 + n2
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is the estimate of the common value of the proportion when the null hypothesis
is true. To test H0 : p1 = p2 versus Ha : p1 6= p2 we compute P (|Z| > |z|) =
2P (Z > |z|) where Z is distributed N(0, 1).
For example, suppose that we want to test H0 : p1 = p2 versus Ha : p1 6= p2

when n1 = 61, �p1 = .803 = 49/61, n2 = 62, �p2 = .613 = 38/62. The command
S
¯
tat I B

¯
asic Statistics I 2 P

¯
roportions with the dialog box as in Display 8.2.1

produces the output

Sample X N Sample p

1 49 61 0.803279

2 38 62 0.612903

Estimate for p(1) - p(2): 0.190375

95% CI for p(1) - p(2): (0.0333680, 0.347383)

Test for p(1) - p(2) = 0 (vs not = 0): Z = 2.38

P-Value = 0.017

in the Session window. The P -value is .017, so we would deÞnitely reject. A 95%
conÞdence interval for p1 − p2 is given by (0.0333680, 0.347383). If other tests
or conÞdence intervals are required, then these are available via the Op

¯
tions

button. The Wilson estimates and associated conÞdence interval are obtained
from the software by modifying the data as indicated above.

Power calculations and minimum sample sizes to achieve a prescribed power
can be obtained using P

¯
ower and Sample Size I 2 P

¯
roportions.

Display 8.2.1: Dialog box for inferences comparing two proportions.
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8.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.
Don�t forget to quote standard errors for any approximate probabilities you

quote in the following problems.

1. Carry out a simulation with the Binomial(40, .3) distribution to assess the
coverage of the 95% conÞdence interval for a single proportion.

2. The accuracy of a conÞdence interval procedure can be assessed by com-
puting probabilities of covering false values. Approximate the probabilities
of covering the values .1, .2, ..., .9 for the 95% conÞdence interval for a
single proportion when sampling from the Binomial(20, .5) distribution.

3. Calculate the power of the two-sided test for testing H0 : p = .5 at level
α = .05 at the points n = 100, p = .1, ..., 9 and plot the power curve.

4. Carry out a simulation with the Binomial(40, .3) and the Binomial(50, .4)
distribution to assess the coverage of the 95% conÞdence interval for a
difference of proportions.

5. Calculate the power of the two-sided test for testing H0 : p1 = p2 versus
Ha : p1 6= p2 at level α = .05 at n1 = 40, p1 = .3, n2 = 50, p2 = .1, ..., 9
and plot the power curve.
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Inference for Two-Way
Tables

New Minitab commands discussed in this chapter

S
¯
tat I T

¯
ables I Chi-Square Te

¯
st

S
¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square

In this chapter, inference methods are discussed for comparing the distributions
of a categorical variable for a number of populations and for looking for relation-
ships among a number of categorical variables deÞned on a single population.
The chi-square test is the basic inferential tool, and this is implemented in
Minitab via the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square command, if

the data is in the form of raw incidence data, or the S
¯
tat I T

¯
ables I Chi-Square

Te
¯
st command, if the data comes in the form of counts.

9.1 Tabulating and Plotting

The relationship between two categorical variables is typically assessed by cross-
tabulating the variables in a table. For this, the S

¯
tat I T

¯
ables I C

¯
ross Tab-

ulation and Chi-Square command is available. We illustrate using an example
where each categorical variable takes two values. Of course, each variable can
take a number of values, and this need not be the same for each categorical
variable.
Suppose that we have collected data on courses being taken by students and

have recorded a 1 in C2 if the student is taking Statistics and a 0 if not. If the
student is taking Calculus, a 1 is recorded in C3 and a 0 otherwise. Also, we
have recorded the student number in C1. These data for 10 students follow.
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Row C1 C2 C3
1 12389 1 0
2 97658 1 0
3 53546 0 1
4 55542 0 1
5 11223 1 1
6 77788 0 0
7 44567 1 1
8 32156 1 0
9 33456 0 1
10 67945 0 1

We cross-tabulate the data in C2 and C3 using the S
¯
tat I T

¯
ables I C

¯
ross

Tabulation and Chi-Square command and the dialog box shown in Display 9.1.1.

Display 9.1.1: Dialog box for producing tables.

This produces the output

Rows: C2 Columns: C3

0 1 All

0 1 4 5
1 3 2 5
All 4 6 10

Cell Contents --
Count

in the Session window that reveals there is 1 student taking neither Statistics
nor Calculus, 4 students taking Calculus but not Statistics, 3 students taking
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Statistics but not Calculus, and 2 students taking both subjects. The row
marginal totals are produced on the right, and the column marginal totals are
produced below the table. We have chosen the cell entries in the table to be
frequencies (counts), but we can see from Display 9.1.1 that there are other
choices. For example, if we had checked the Total percents box instead, we
obtain the output

Rows: C2 Columns: C3

0 1 All

0 10.00 40.00 50.00
1 30.00 20.00 50.00
All 40.00 60.00 100.00

Cell Contents --
% of Tbl

where each entry is the percentage that cell represents of the total number of
observations used to form the table. Of course, we can ask for more than just
one of these cell statistics to be produced in a table.
To examine the relationship between the two variables, we compare the

conditional distributions given row, by checking the Row percents box, or the
conditional distributions given column, by checking the Column percents box.
For example, choosing to calculate row percents gives us the table

Rows: C2 Columns: C3

0 1 All

0 20.00 80.00 100.00
1 60.00 40.00 100.00
All 40.00 60.00 100.00

Cell Contents --
% of Row

that gives the row distributions as 20%, 80% for the Þrst row and 60%, 40%
for the second row. So it looks as if there is a strong relationship between the
variable indicating whether or not a student takes Statistics and the variable
indicating whether or not a student takes Calculus. For example, a student who
does not take Statistics is more likely to take Calculus than a student who does
take Statistics. Of course, this is not a real data set, and it is small at that. So,
in reality, we could expect a somewhat different conclusion.
Some graphical techniques are also available for this problem. In Figure

9.1.1, we have plotted the conditional distributions given row in a bar chart
using the command G

¯
raph I Bar

¯
Chart in Version 14. This in turn leads to the

dialog box shown in Display 9.1.2, where we have selected Cluster. This leads



136 Chapter 9

to the dialog box shown in Display 9.1.3, where we have entered the variables
C2, C3 in the Categorical variables box (note order) and then clicked on Bar
Chart Options to bring up the dialog box shown in Display 9.1.4. Here we have
indicated that we want to display the distributions as percents. These plots are
an evocative way to display the relationship between the variables.
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Figure 9.1.1: Conditional distributions of columns given row.

Display 9.1.2: Dialog box for selecting type of bar chart.
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Display 9.1.3: Dialog box for choosing variables to graph in bar chart.

Display 9.1.4: Dialog box for selecting options for the bar chart.

In Version 13 we use the command G
¯
raph I C

¯
harts and Þll in the dialog box

so that Function is C
¯
ount, the Y -variable is C3, the X-variable is C2, Display

is Bar, and under Op
¯
tions we selected Cluster with variable C3 and Total Y

to 100% within each X-category. The bars for C3 are ordered according to the
increasing value of C2. If you would rather there be a single bar for each cate-
gory of the X-variable and this bar be subdivided according to the conditional
distribution of the Y -variable, then, rather than Cluster with variable Y , use
Stack with variable Y .
The corresponding session command is table and there are the subcom-

mands totpercents, rowpercents, and colpercents to specify whether or
not we want total percents, row percents, and column percents to be printed for
each cell. For example,

MTB > table c2 c3
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produces the table of counts shown previously. If you do not want the marginal
statistics to be printed, use the noall subcommand. Any cases with missing
values are not included in the cross-tabulation. If you want them to be included,
use the missing subcommand and a row or column is printed, whichever is
relevant, for missing values. For example, the subcommand

SUBC> missing c2 c3;

ensures that any cases with missing values in C2 or C3 are also tabulated.

9.2 The Chi-square Test

If you have a single variable, you can use the S
¯
tat I T

¯
ables I C

¯
ross Tabulation

command to form the table of counts if your data is not in this form. To carry
out a chi-square goodness-of-Þt test, however, you will have to use Minitab
commands to directly compute the chi-square statistic

X2 =
X
cell

(observed count in cell − expected count in cell)2

expected count in cell

and the P -value given by the probability

P (Y > X2)

where Y follows a Chi-square(k) distribution based on an appropriate degrees
of freedom k as determined by the table and the model being Þtted. This is an
approximate distribution result. Recall that the Chi-square(k) distribution was
discussed in II.6.5.
When we have more than one variable and we are interested in whether or

not a relationship exists, there are Minitab commands to carry out the chi-
square analysis. Recall that there is no relationship between the variables�i.e.,
the variables are independent�if and only if the conditional distributions of one
variable given the other are all the same. So in a two-way table we can assess
whether or not there is a relationship by comparing the conditional distributions
of the columns given the rows. Of course, there will be differences in these
conditional distributions simply due to sampling error. Whether or not these
differences are signiÞcant is assessed by conducting a chi-square test. When
the table has r rows and c columns and we are testing for independence, then
k = (r−1)(c−1). Note that for a cell the square of a cell�s standardized residual
is that cell�s contribution to the chi-square statistic, namely

(observed count in cell − expected count in cell)
2

expected count in cell

For example, suppose for 60 cases we have a categorical variable in C1 taking
the values 0 and 1 and a categorical variable in C2 taking the values 0, 1 and
2. Suppose further that the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square

command with the dialog box as in Display 9.2.1
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Display 9.2.1: Dialog box for cross-tabulating categorical variables.

produced the table

Rows: C1 Columns: C2

0 1 2 All

0 10 13 11 34
1 9 10 7 26
All 19 23 18 60

Cell Contents --
Count

in the Session window. This records the counts in the 6 cells of a table, with C1
indicating row and C2 indicating column. The variable C1 could be indicating
a population with C2 a categorical variable deÞned on each population (or
conversely), or both variables could be deÞned on a single population.
When using the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square com-

mand, a chi-square analysis can be carried out by clicking the Chi-Square anal-
ysis box in the dialog box of Display 9.2.1 as this brings up the dialog box shown
in Display 9.2.2 where we have checked the Chi-square analysis box.

Display 9.2.2: Dialog box for carrying out a chi-square analysis.
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The remaining boxes give additional options concerning what is printed in the
Session window. We have chosen to have only the cell count printed for each
cell in addition to the chi-square statistic and its associated P -value. Clicking
on the OK button in this dialog box leads to the output

Rows: C1 Columns: C2
0 1 2 All

0 10 13 11 34
1 9 10 7 26
All 19 23 18 60
Chi-Square = 0.271, DF = 2, P-Value = 0.873
Cell Contents --

Count

being printed in the Session window. The P -value for testing the null hypothesis
that these two categorical variables are independent against the alternative that
they are not independent is .873, and so we do not reject the null hypothesis.
It is possible to cross-tabulate more than two variables and to test simulta-

neously for mutual statistical independence among the variables using the S
¯
tat

I T
¯
ables I C

¯
ross Tabulation and Chi-Square command. Recall that it is also

a good idea to plot the conditional distributions as well.
The general syntax of the corresponding session command table command

is

table E1 . . . Em;
chisquare V.

where E1, ..., Em are columns containing categorical variables and V is either
omitted or takes the value 1, 2, or 3. The value 1 is the default and causes
the count to be printed in each cell and can be omitted. The value 2 causes
the count and the expected count, under the hypothesis of independence, to be
printed in each cell. The value 3 causes the count, the expected count, and the
standardized residual to be printed in each cell. For example, the command

MTB > table c1 c2;
SUBC> chisquare.

also produces the above output.

9.3 Analyzing Tables of Counts

If you have a two-way cross-tabulation for which the cell counts are already
tabulated, you can use the S

¯
tat I T

¯
ables I Chi-Square Te

¯
st command on this

data to carry out the chi-square analysis. For example, suppose we put the
following data in columns C1�C3 as
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Row C1 C2 C3
1 51 22 43
2 92 21 28
3 68 9 22

corresponding to the counts arising from the cross-classiÞcation of a row and
column variable. We then use the command S

¯
tat I T

¯
ables I Chi-Square Te

¯
st

on this data with the dialog box as shown in Display 9.3.1.

Display 9.3.1: Dialog box for chi-square test on a table of counts.

This produces the output

Expected counts are printed below observed counts
C1 C2 C3 Total

1 51 22 43 116
68.75 16.94 30.30
4.584 1.509 5.320

2 92 21 28 141
83.57 20.60 36.83
0.850 0.008 2.119

3 68 9 22 99
58.68 14.46 25.86
1.481 2.062 0.577

Total 211 52 93 356
Chi-Sq = 18.510, DF = 4, P-Value = 0.001

in the Session window. The chi-square statistic has the value 18.51 in this
case and the P -value is .001, so we reject the null hypothesis that there is no
relationship between the row and column variables.
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The general syntax of the corresponding session command chisquare com-
mand is

chisquare E1 . . . Em

and this computes the expected cell counts, the chi-square statistic, and the
associated P -value for the table in columns E1, ..., Em. Note that there is a
limitation on the number of columns; namely we must havem ≤ 7. For example,
the command

MTB > chisquare c1-c3

produces the above chi-square analysis.

9.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. Suppose that the observations in the following table are made on two cat-
egorical variables where variable 1 takes 2 values and variable 2 takes 3
values. Using the S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-Square com-

mand, cross-tabulate this data in a table of frequencies and in a table of
relative frequencies. Calculate the conditional distributions of variable 1,
given variable 2. Plot the conditional distributions. Is there any indication
of a relationship existing between the variables? How many conditional
distributions of variable 2, given variable 1, are there?

Obs 1 2 3 4 5 6 7 8 9 10
Var 1 0 0 0 1 1 0 1 0 0 1
Var 2 2 1 0 0 2 1 2 0 1 1

2. (9.1) Use Minitab commands to calculate the marginal distributions and
the conditional distributions, given Age group. Note that you cannot
use S

¯
tat I T

¯
ables I C

¯
ross Tabulation and Chi-square for this. Plot the

conditional distributions.

3. Use Minitab to directly compute the expected frequencies, standardized
residuals, chi-square statistic, and P -value for the hypothesis of indepen-
dence in the table of Example 9.16 in IPS.

4. (9.12) Carry out a chi-square analysis to determine whether or not the
variables in this problem are related. Plot bar charts of the conditional
distributions. Make sure you use the same scale on each plot so that they
are comparable.
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5. (9.13) Calculate and compare the conditional distributions of motivation
given gender. Plot these conditional distributions in bar charts. Carry
out a chi-square analysis to determine whether or not the variables in this
problem are related.

6. Suppose we have a discrete distribution on the integers 1, . . . , k with prob-
abilities p1, . . . , pk. Further, suppose we take a sample of n from this dis-
tribution and record the counts f1, . . . , fk, where fi records the number
of times we observed i. It can be shown that

P (f1 = n1, . . . , fk = nk) =
n!

n1! · · ·nk!p
n1
1 · · · pnkk

when the ni are nonnegative integers that sum to n. This is called the
Multinomial(n, p1, . . . , pk) distribution, and it is a generalization of the
Binomial(n, p) distribution. It is the relevant distribution for describing
the counts in cross-tabulations. For k = 4, p1 = p2 = p3 = p4 = .25, n = 3,
calculate these probabilities and verify that it is a probability distribution.
Note that the gamma function is available with the C

¯
alc I Cal

¯
culator

command (see Appendix B.1), and this can be used to evaluate factorials
such as n! and also 0! = 1.

7. Calculate P (f1 = 3, f2 = 5, f3 = 2) for the Multinomial(10, .2, .5, .3) dis-
tribution.

8. Generate (f1, f2, f3) from the Multinomial(1000, .2, .4, .4) distribution. Hint:
Generate a sample of 1000 from the discrete distribution on 1, 2, 3 with
probabilities .2, .4 , .4, respectively.
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Chapter 10

Inference for Regression

New Minitab command discussed in this chapter

S
¯
tat I R

¯
egression I Re

¯
sidual Plots

This chapter deals with inference for the simple regression model. A regression
analysis can be carried out using the command S

¯
tat I R

¯
egression I R

¯
egression.

The regression as well as a scatterplot with the least-squares line overlaid can
be obtained via S

¯
tat I R

¯
egression I F

¯
itted Line Plot. Some aspects of these

commands were discussed in II.2.3. Residual plots can be obtained using S
¯
tat

I R
¯
egression I Re

¯
sidual Plots, provided you have saved the residuals.

10.1 Simple Regression Analysis

The command S
¯
tat I R

¯
egression I R

¯
egression provides a Þt of the model

y = α + βx + N. Here, y is the response variable, x is the explanatory or
predictor variable, N is the error variable with an N (0, σ) distribution, and α,
β, and, σ are Þxed unknown constants. These assumptions imply that, given
x, the distribution of y is distributed N (α+ βx, σ). So the mean of y given x
is α+ βx, and this gives the relationship between y and x, i.e., as x changes at
most the mean of the conditional distribution of y given x changes according to
the linear function α+ βx.
The primary aim of a regression analysis is to make inferences about the

unknown intercept α and the unknown slope β and to make predictive inferences
about future values of y at possibly new values of x. All inferences are dependent
on this model being correct. If we go ahead and report inferences when the
model is incorrect, we run the risk of these inferences being invalid. So we must
always check that the model makes sense in light of the data obtained. This is
referred to as model checking.

145
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We let (x1, y1) , . . . , (xn, yn) denote the data on which we will base all our
inferences. The basic inference method for this model is to use least-squares to
estimate α and β, and we denote these estimates by a and b, respectively, i.e.,
a and b are the values of α and β that minimize

S2 =
nX
i=1

(yi − α− βxi)2 .

We predict the value of a future y, when the explanatory variable takes the
value x, by �y = a + bx. The ith Þtted value �yi is the estimate of the mean of
y at xi; i.e., �yi = a + bxi. The ith residual is given by ri = yi − �yi, i.e., it is
the error incurred when predicting the value of y at xi by �yi. We estimate the
standard deviation σ by

s =

vuut 1

n− 2
nX
i=1

(yi − �yi)2 =
vuut 1

n− 2
nX
i=1

r2i

which equals the square root of the MSE (mean-squared error) for the regression
model.
Of course, the estimates a, b, and �y are not equal to the quantities that

they are estimating. It as an important aspect of a statistical analysis to say
something about how accurate these estimates are, and for this we use the
standard error of the estimate. The standard error of a is given by

s

s
1

n
+

x̄2Pn
i=1 (xi − x̄)2

.

The standard error of b is given by

s

s
1Pn

i=1 (xi − x̄)2
.

The standard error of the estimate a+ bx of the mean α+ βx is given by

s

s
1

n
+

(x− x̄)2Pn
i=1 (xi − x̄)2

.

To predict y at x, we must take into account the additional variation caused by
the error N, and so the standard error of a+ bx, as a predictor of y at x, is given
by

s

s
1 +

1

n
+

(x− x̄)2Pn
i=1 (xi − x̄)2

.

Finally, the residual ri, as an estimate of the error incurred at xi, has standard
error
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s

s
1− 1

n
− (xi − x̄)2Pn

i=1 (xi − x̄)2
.

The ith standardized residual is then given by ri divided by this quantity.
We now illustrate regression analysis using Minitab. Suppose we have the

following data points

(x1, y1) = (1966, 73.1)

(x2, y2) = (1976, 88.0)

(x3, y3) = (1986, 119.4)

(x4, y4) = (1996, 127.1)

where x is year and y is yield in bushels per acre and that we give x the
name year and y the name yield. The S

¯
tat I R

¯
egression I F

¯
itted Line Plot

command with yield as the response and year as predictor produces the plot
of Display 10.1.1
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Fitted Line Plot
yield =  - 3729 + 1.934 year

Display 10.1.1: Scatterplot of the data together with the least-squares line.

The S
¯
tat I R

¯
egression I F

¯
itted Line Plot command also produces some of

the Session window output below in the Session window. Because we wanted
more features of a regression analysis than this command provides, we resorted
to the S

¯
tat I R

¯
egression I

¯
Regression command together with the dialog boxes

as in Displays 10.1.2, 10.1.3, 10.1.4, and 10.1.5.
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Display 10.1.2: Dialog box for simple regression analysis.

Display 10.1.3: Dialog box for selecting graphs to be plotted in regression analysis.

Display 10.1.4: Dialog box for selecting predictive inferences in a regression analysis.
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Display 10.1.5: Dialog box for selecting quantities to be stored in a regression

analysis.

These entries in the dialog boxes produce the output

Regression Analysis
The regression equation is
yield = - 3729 + 1.93 year

Predictor Coef StDev T P
Constant -3729.4 606.6 -6.15 0.025
year 1.9340 0.3062 6.32 0.024

S = 6.847 R-Sq = 95.2% R-Sq(adj) = 92.8%

Analysis of Variance
Source DF SS MS F P
Regression 1 1870.2 1870.2 39.89 0.024
Residual Error 2 93.8 46.9
Total 3 1963.9

Predicted Values
Fit StDev Fit 95.0% CI 95.0% PI

150.25 8.39 (114.17, 186.33) (103.67, 196.83) X
X denotes a row with X values away from the center

in the Session window.
The dialog box of Display 10.1.2 establishes that yield is the response and

year is the explanatory variable. The output from this gives the least-squares
line as y = −3729+1.93x. Further, the standard error of b0 = −3729.4 is 606.6,
the standard error of b1 = 1.934 is 0.3062, the t statistic for testing H0 : β0 = 0
versus Ha : β0 6= 0 is −6.15 with P -value 0.025, and the t statistic for testing
H0 : β1 = 0 versus Ha : β1 6= 0 is 6.32 with P -value 0.024. The estimate
of σ is s = 6.847 and the squared correlation�coefficient of determination�is
R2 = .952, indicating that 95% of the observed variation in y is explained by the
changes in x. The Analysis of Variance table indicates that the F statistic for
testing H0 : β1 = 0 versus Ha : β1 6= 0 is 39.89 with P -value 0.024 and the MSE
is 46.9. So we deÞnitely reject the null hypothesis that there is no relationship
between the response and the predictor.
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Before clicking on the OK button of the dialog box of Display 10.1.2, however,
we clicked on the Graphs button to bring up the dialog box of Display 10.1.3, the
Op
¯
tions button to bring up the dialog box of Display 10.1.4, and the Storage

button to bring up the dialog box of Display 10.1.5. In the Graphs dialog
box, we speciÞed that we want the standardized residuals plotted in a normal
probability plot and plotted against the variable year. These plots appear
in Displays 10.1.6 and 10.1.7, respectively, and don�t indicate that any model
assumptions are being violated.

Standardized Residual
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Display 10.1.6: Normal probability plot of the standardized residuals.
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Display 10.1.7: A plot of the standardized residuals versus the explanatory variable.

In the Options dialog box, we speciÞed that we wanted to estimate the mean
value of y at x = 2006 and report and store this value together with a 95%
conÞdence interval for this quantity and a 95% prediction interval for this quan-
tity. The output above gives the estimated mean value at x = 2006 as 150.25
with standard error 8.39, and the 95% conÞdence and prediction intervals for
this quantity are (114.17, 186.33) and (103.67, 196.83), respectively. The esti-
mate is stored in the worksheet in a variable called pfit1, and the endpoints
of the conÞdence and prediction intervals are stored in the worksheet with the
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names clim1, clim2, plim1, plim2, respectively. In the Storage dialog box, we
speciÞed that we wanted to store the values of a and b, the Þtted values, the
residuals and the standardized residuals. The residuals are stored in a variable
called resi1, the standardized residuals are stored in a variable called sres1,
the values of a and b are stored consecutively in a variable named coefs1, and
the Þtted values are stored in a variable called fits1.
All of the stored quantities are available for further use. Suppose we want a

95% conÞdence interval for b. The commands

MTB > invcdf .975;
SUBC> student 2.
Student�s t distribution with 2 DF
P( X <= x) x

0.9750 4.3027
MTB > let k2=4.3027*.3062
MTB > let k3=coef1(2)-k2
MTB > let k4=coef1(2)+k2
MTB > print k3 k4
K3 0.616513
K4 3.25149

gives this interval as (0.617, 3.251).
The general syntax of the corresponding session command regress command

for Þtting a line is

regress E11 E2

where E1 contains the values of the response variable y and E2 contains the
values of the explanatory variable x. There are a number of subcommands
that can be used with regress, and these are listed and explained below.

coefficients E1 � stores the estimates of the coefficients in column E1.

constant (noconstant) � ensures that β0 is included in the regression equa-
tion, while noconstant Þts the equation without β0.

Þts E1 � stores the Þtted values �y in E1.

ghistogram � causes a histogram of the residuals speciÞed in rtype to be
plotted.

gÞts� causes a plot of the residuals speciÞed in rtype versus the Þtted values
to be plotted.

gnormal � causes a normal quantile plot of the residuals speciÞed in rtype
to be plotted.

gorder � causes a plot of the residuals speciÞed in rtype versus order to be
plotted.

gvariable E1 � causes a plot of the residuals speciÞed in rtype versus the
explanatory variable in column E1 to be plotted.
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mse E1 � stores the mean squared error in constant E1.

predict E1 . . . Ek � (k is the number of explanatory variables where k = 1 with
simple linear regression) computes and prints the predicted values at E1, ..., Ek,
where these are columns of the same length or constants with Ei correspond-
ing to the ith explanatory variable. Also, this prints the estimated standard
deviations of these values, conÞdence intervals for these values, and prediction
intervals. The subcommand predict in turn has a number of subcommands.

conÞdence V � V speciÞes the level for the conÞdence intervals.

pÞts E1 � stores the predicted values in E1.

psdÞts E1 � stores the estimated standard deviations of the
predicted values in E1.

climits E1 E2 � stores the lower and upper conÞdence limits for the
predicted values in E1 and E2, respectively.

plimits E1 E2 � stores the lower and upper prediction limits for the
predicted values in E1 and E2, respectively.

residuals E1 � stores the regular residuals in E1.

rtype V � indicates what type of residuals are to be used in the plotting
subcommands, where V = 1 is the default and speciÞes regular residuals, V
= 2 speciÞes standardized residuals, and V = 3 speciÞes Studentized deleted
residuals.

sresiduals E1 � stores the standardized residuals�the residuals divided by
their estimated standard deviations�in E1.

For example, the session commands

MTB > regress �yield� 1 �year�;
SUBC> coefficients c3;
SUBC> mse k1;
SUBC> fits c4;
SUBC> residuals c5;
SUBC> sresiduals c6;
SUBC> rtype 2;
SUBC> gnormal;
SUBC> gvariable �year�;
SUBC> predict 2006;
SUBC> pfits c7;
SUBC> climits c8 c9;
SUBC> plimits c10 c11.

produce the same results as the menu commands with the dialog boxes as in
Displays 10.1.2, 10.1.3, 10.1.4, and 10.1.5 for the example of this section.
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10.2 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values y = β0 + β1x + N = 1 + 3x + N. Calculate the least-squares
estimates of β0 and β1 and the estimate of σ

2. Repeat this example but
take 5 observations at each value of x. Compare the estimates from the
two situations and their estimated standard deviations.

2. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values y = β0 + β1x + N = 1 + 3x + N. Plot the least-squares line.
Repeat your computations twice after changing the Þrst y observation to
20 and then to 50, and make sure the scales on all the plots are the same.
What effect do you notice?

3. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values y = β0 + β1x + N = 1 + 3x + N. Plot the standardized
residuals in a normal quantile plot against the Þtted values and against
the explanatory variable. Repeat this, but in C3 place the values of y =
1+ 3x− 5x2 + N. Compare the residual plots.

4. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3,
store the values y = β0 + β1x + N = 1 + 3x + N. Plot the standardized
residuals in a normal quantile plot against the Þtted values and against the
explanatory variable. Repeat this, but in C2 place the values of a sample
of 13 from the Student(1) distribution. Compare the residual plots.

5. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values y = β0 + β1x + N = 1 + 3x + N. Calculate the predicted values
and the lengths of .95 conÞdence and prediction intervals for this quantity
at x = .1, 1.1, 2.1, 3.5, 5, 10, and 20. Explain the effect that you observe.

6. In C1, place the x values −3.0, −2.5, −2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values y = β0 + β1x + N = 1 + 3x + N. Calculate the least-squares
estimates and their estimated standard deviations. Repeat this, but for
C1 the x values are to be 12 values of −3 and one value of 3. Compare
your results and explain them.
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Multiple Regression

In this chapter, we discuss multiple regression; i.e., we have a single numeric
response variable y and k > 1 explanatory variables x1, . . . , xk. There are no
real changes in the behavior of the S

¯
tat I R

¯
egression I R

¯
egression command,

and the descriptions we gave in Chapter 10 apply to this chapter as well. We
present an example of a multiple regression analysis using Minitab.

A multiple regression analysis can be carried out using S
¯
tat I R

¯
egression

I R
¯
egression and Þlling in the dialog box appropriately. Residual plots can be

obtained using S
¯
tat I R

¯
egression I Re

¯
sidual Plots provided you have saved

the residuals. Also available in Minitab are stepwise regression using S
¯
tat I

R
¯
egression I R

¯
egression I S

¯
tepwise and best subsets regression using S

¯
tat I

R
¯
egression I R

¯
egression I B

¯
est Subsets.

11.1 Example of a Multiple Regression

We consider a generated multiple regression example to illustrate the use of the
S
¯
tat I R

¯
egression I R

¯
egression command in this context. Suppose that k = 2

and y = β0+β1x1+β2x2+ N = 1+2x1+3x2+ N, where N is distributed N(0, σ)
with σ = 1.5. We generated a sample of 16 from the N(0, 1.5) distribution and
placed these values in C1. In C2 we stored the values of x1 and in C3 stored
the values of x2. Suppose that these variables take every possible combination
of x1 = −1,−.5, .5, 1 and x2 = −2,−1, 1, 2. In C4, we placed the values of the
response variable y.
We then proceeded to analyze this data as if we didn�t know the values of β0,

β1, β2, and σ. The S
¯
tat I R

¯
egression I R

¯
egression command as implemented

in Display 11.1.1, together with Displays 11.1.2 and 11.1.3,
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Display 11.1.1: Dialog box for the S
¯
tat IR

¯
egression IR

¯
egression command in the

example.

Display 11.1.2: Dialog box obtained by clicking on the St
¯
orage button in the dialog

box depicted in Display 11.1.1. We have requested that the least-squares coefficients

be stored.

Display 11.1.3: Dialog box obtained by clicking on the Options button in the dialog

box depicted in Display 11.2.1. We have requested that a value be predicted at the

settings x1 = 0, x2 = 0.

produces the output
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The regression equation is
C4 = 1.00 + 2.38 C2 + 2.50 C3

Predictor Coef StDev T P
Constant 1.0014 0.3307 3.03 0.010
C2 2.3807 0.4183 5.69 0.000
C3 2.4964 0.2092 11.94 0.000

S = 1.323 R-Sq = 93.1% R-Sq(adj) = 92.0%

Analysis of Variance
Source DF SS MS F P
Regression 2 305.95 152.98 87.42 0.000
Residual Error 13 22.75 1.75
Total 15 328.70

Source DF Seq SS
C2 1 56.68
C3 1 249.28

Unusual Observations
Obs C2 C4 Fit StDev Fit Residual St Resid
6 -0.50 -5.574 -2.685 0.444 -2.889 -2.32R
R denotes an observation with a large standardized residual

Predicted Values
Fit StDev Fit 95.0% CI 95.0% PI

1.001 0.331 (0.287, 1.716) (-1.944, 3.947)

Values of Predictors for New Observations

New Obs C2 C3
1 0.000000 0.000000

This speciÞes the least-squares equation as y = 1.00 + 2.38x1 + 2.50x2. For
example, the estimate of β1 is b1 = 2.3807 with standard error 0.4183 and the
t statistic for testing H0 : β1 = 0 versus Ha : β1 6= 0 is 5.69 with P -value 0.000.
The estimate of σ is s = 1.323 and R2 = .931. The Analysis of Variance table
indicates that the F statistic for testing H0 : β1 = β2 = 0 versus Ha : β1 6= 0
or β2 6= 0 takes the value 87.42 with P -value 0.000 so we would deÞnitely reject
the null hypothesis. Also, the MSE is given as 1.75.
The table after the Analysis of Variance table is called the Sequential Analy-

sis of Variance table and is used when we want to test whether or not explana-
tory variables are in the model in a prescribed order. For example, the table
that contains the rows labeled C2 and C3 allows for the testing of the sequence
of hypotheses H0 : β2 = 0 versus Ha : β2 6= 0 and�if we reject this (and only if
we do) � then testing the hypothesis H0 : β1 = 0 versus Ha : β1 6= 0. To test
these hypotheses, we Þrst compute F = 249.28/s2 = 249.28/1.75 = 142.45 and
then compute the P -value P (F (1, 13) > 142.45) = 0.00, and so we reject and go
no further. If we had not rejected this null hypothesis, the second null hypoth-
esis would be tested in exactly the same way. Obviously, the order in which we
put variables into the model matters with these sequential tests. Sometimes, it
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is clear how to do this; e.g., in Þtting a quadratic model y = β0+β1x+β2x
2+ N

we put x1 = x and x2 = x2 and test for the existence of the quadratic term
Þrst and, if no quadratic term is found, test for the existence of the linear term.
Sometimes, the order for testing is not as clear and the sequential tests are not
as appropriate.
The dialog box in Display 11.1.2 is obtained by clicking on the Storage button

in the dialog box of Display 11.1.1. We stored the values of the least-squares
estimates in C5, as the dialog box in Display 11.1.2 indicates, and so these are
available for forming conÞdence intervals. Then, for example, the commands

MTB > invcdf .95;
SUBC> student 13.
Student�s t distribution with 13 DF
P(X <= x) x
0.9500 1.7709
MTB > let k1=1.7709*.2092
MTB > let k2=c5(3)-k1
MTB > let k3=c5(3)+k1
MTB > print k2 k3
K2 2.12590
K3 2.86685

compute a 90% conÞdence interval for β2 as (2.126, 2.869), which we note does
not cover the true value in this case.
The dialog box in Display 11.1.3 is obtained by clicking on the Options

button in the dialog box of Display 11.1.1. The dialog box in Display 11.1.3
indicates that we requested that the program compute the predicted value at
x1 = 0, x2 = 0 as well as the conÞdence and prediction intervals for this value.
We obtained the predicted value as 1.001 with standard error .331 and as
well the 95% conÞdence and prediction intervals given by (0.287, 1.716) and
(−1.944, 3.947), respectively. Further, these limits were stored in the columns
C6�C9.
The dialog box in Display 11.1.4 is obtained by clicking on the Graphs button

in the dialog box of Display 11.1.1. Here we requested a normal quantile plot of
the standardized residuals, which we show in Display 11.1.5, and also requested
plots of the standardized residuals against each of the explanatory variables,
which we don�t show. All of these plots look reasonable although we note that
the software has identiÞed the sixth observation as having a large standardized
residual even though we know that the model is correct. Of course, 16 is not
many data points so we can expect inference to be somewhat unreliable in this
case.
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Display 11.1.4: Dialog box obtained by clicking on the Graphs button in the dialog

box depicted in Display 11.1.1.

Display 11.1.5: Normal probability plot of the standardized residuals for the

example.

The following session commands produce the above output for the example
of this section.

MTB > regress c4 2 c2 c3;
SUBC> coefficients c5;
SUBC> rtype 2;
SUBC> gnormal;
SUBC> gvariable C2 C3;
SUBC> predict 0 0;
SUBC> climits c6 c7;
SUBC> plimits c8 c9.
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We can also control the amount of output obtained from the S
¯
tatIR

¯
egression

I R
¯
egression command. This is accomplished by clicking on the Results button

of the dialog box shown in Display 11.1.1 bringing up Display 11.1.6.

Display 11.1.6: Dialog box obtained by clicking on the Results button in the dialog

box depicted in Display 11.1.1.

We have requested that, in addition to the Þtted regression equation, least
squares coefficients, s, R2, and ANOVA table, the table of sequential sums of
squares (for the order in which the variables appear in the model) and a table
of unusual observations be printed.
The session command to control the amount output from the regress and

other Minitab commands is brief. The general syntax of the brief command
is

brief V

where V is a nonnegative integer that controls the amount of output. For any
given command the output is dependent on the speciÞc command although V =
0 suppresses all output, for all commands, beyond error messages and warnings.
The default level of V is 2. When V = 3, the regress command produces the
usual output and in addition prints x, y, �y, the standard deviation of �y, y − �y
and the standardized residual. When V = 1, the regress command gives the
same output as when V = 2 but the sequential analysis of variance table is not
printed. Don�t forget that after you set the level of brief, this may affect the
output of all commands you subsequently type and therefore it may need to be
reset.

11.2 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to be
carried out using Minitab and the exercises are designed to ensure that you have
a reasonable understanding of the Minitab material in this chapter. Generally,
you should be using Minitab to do all the computations and plotting required
for the problems in IPS.
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1. In C1, place the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values of x2 = x

2. In C4 store the values of y = β0+β1x1+β2x2+ N =
1 + 3x+ 5x2 + N. Calculate the least-squares estimates of β0, β1, and β2
and the estimate of σ2. Carry out the sequential F tests testing Þrst for
the quadratic term and then, if necessary, testing for the linear term.

2. In C1, place the x values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). Fit the
model y = 1+3cos(x)+5 sin(x)+ N. Calculate the least-squares estimates
of β0, β1, and β2 and the estimate of σ2. Carry out the F test for any
effect due to x. Are the sequential F tests meaningful here?

3. In C1, place the x1 values −3.0,−2.5,−2.0, . . . , 2.5, 3.0. In C2, store a
sample of 13 from the error N, where N is distributed N(0, 2). In C3, store
the values of x2 = x

2. In C4, store the values of y = 1+3cos(x)+5 sin(x)+
N. Next Þt the model y = β0 + β1x1 + β2x2 + N and plot the standardized
residuals in a normal quantile plot and against each of the explanatory
variables.
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Chapter 12

One-Way Analysis of
Variance

New Minitab commands discussed in this chapter

S
¯
tat I A

¯
NOVA I O

¯
ne-way

S
¯
tat I A

¯
NOVA I One-way (U

¯
nstacked)

This chapter deals with methods for making inferences about the relationship
existing between a single numeric response variable and a single categorical
explanatory variable. The basic inference methods are the one-way analysis of
variance (ANOVA) and the comparison of means. There are two commands for
carrying out a one-way analysis of variance, namely S

¯
tat I A

¯
NOVA I O

¯
ne-way

and S
¯
tat I A

¯
NOVA I One-way (U

¯
nstacked). They differ in the way the data

must be stored for the analysis.
We write the one-way ANOVA model as xij = µi + Nij, where i = 1, . . . , I

indexes the levels of the categorical explanatory variable and j = 1, . . . , ni
indexes the individual observations at each level, µi is the mean response at
the ith level, and the errors Nij are a sample from the N(0, σ) distribution.
Based on the observed xij, we want to make inferences about the unknown
values of the parameters µ1, . . . , µI , σ

12.1 A Categorical Variable and a Quantitative
Variable

Suppose that we have two variables, one variable is categorical and one is quan-
titative, and we want to examine the form of the relationship between these
variables. Of course there may not even be a relationship between the vari-
ables. We treat the situation where the categorical variable is explanatory and
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the quantitative variable is the response and examine some basic techniques for
addressing this question.
To illustrate, we use the data in the following table. Here, we have four

different colors of insect trap�lemon yellow, white, green, and blue�and the
number of insects trapped on six different instances of each trap.

Board Color Insects Trapped
Lemon Yellow 45 59 48 46 38 47
White 21 12 14 17 13 17
Green 37 32 15 25 39 41
Blue 16 11 20 21 14 7

We have read these data into a worksheet so that C1 contains the trap color,
with 1 indicating lemon yellow, 2 indicating white, 3 indicating green, and 4
indicating blue, and in C2 we have put the numbers of insects trapped. We
calculate the mean number of insects trapped for each trap using the S

¯
tat I

T
¯
ables I D

¯
escriptive Statistics command with the dialog boxes as in Displays

12.1.1 and 12.1.2. In the dialog box of Display 12.1.1, we have put C1 into the
ClassiÞcation

¯
variables box and clicked on the S

¯
ummaries button to bring up

the dialog box of Display 12.1.2. In this box, we have put C2 into the Associated

¯
variables box and selected Means to indicate that we want the mean of C2 to
be computed for each value of C1.

Display 12.1.1: First dialog box for tabulating a quantitative variable by a categorical

variable.

Display 12.1.2: Second dialog box for tabulating a quantitative variable by a

categorical variable.
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Clicking on the OK buttons produces the output

Rows: BoardColor

InsectsTrapped

Mean

1 47.17

2 15.67

3 31.50

4 14.83

All 27.29

in the Session window. The fact that the means change from one level of C1 to
another seems to indicate that there is some relationship between the color of
insect trap and the number of insects trapped. As indicated in Display 12.1.1,
there are many other statistics, besides the mean, that we could have chosen to
tabulate.

In Version 13, we use the S
¯
tat I T

¯
ables I C

¯
ross Tabulation command to

produce this output. We place BoardColor into the ClassiÞcation variables box
and click on the Summaries button to bring up the dialog box of Display 12.1.2
and Þll it in just as we have done there.

It is also a good idea to look at a scatterplot of the quantitative variable
versus the categorical variable. We can do this with G

¯
raphI S

¯
catterplot (G

¯
raph

I P
¯
lot in version 13) and obtain the plot shown in Display 12.1.3.

Display 12.1.3: Scatterplot of number of InsectsTrapped versus BoardColor.

Another useful plot in this situation is to create side-by-side boxplots. This
can be carried out using the G

¯
raph I B

¯
oxplot command. In Version 14, the

dialog box of Display 12.1.4 does this for this data producing the plot shown in
Display 12.1.5. In Version 13, the G

¯
raph I B

¯
oxplot command leads to a dialog

box like Display 12.1.6, which has been Þlled in appropriately to produce a plot
like that shown in Display 12.1.4.
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Display 12.1.4: Dialog box for creating side-by-side boxplots.

Display 12.1.5: Side-by-side boxplots.

Display 12.1.6: Dialog box for creating side-by-side boxplots (Version 13).



One-Way Analysis of Variance 167

The session command table can also be used for creating the tables we have
described in this section. For example, for the example as described above, the
commands

MTB > table c1;
SUBC> means c2.

produce the mean number of insects trapped for each color of trap as given
above. Besides the means subcommand, we have medians, sums, mini-
mums, maximums, n (count of the nonmissing values), nmiss (count of the
missing values), stdev, stats (equivalent to n, means and stdev), and data
(lists the data for each cell). In addition, there is a subcommand proportion
with the syntax

proportion = V E1;

which gives the proportion of cases that have the value V in column E1.

12.2 One-Way Analysis of Variance

The data in the table below arose from a study of reading comprehension de-
signed to compare three methods of instruction called basal, DRTA, and strate-
gies. The data comprise scores on a test attained by children receiving each of
the methods of instruction. There are 22 observations in each group. This study
was conducted by Baumann and Jones of the Purdue School of Education.

Method Scores
Basal 4 6 9 12 16 15 14 12 12 8 13 9 12 12 12 10 8 12 11 8 7 9
DRTA 7 7 12 10 16 15 9 8 13 12 7 6 8 9 9 8 9 13 10 8 8 10
Strat 11 7 4 7 7 6 11 14 13 9 12 13 4 13 6 12 6 11 14 8 5 8

We now carry out a one-way analysis of variance on this data to determine
if there is any difference between the mean performances of students exposed
to the three teaching methods. For this, we use the S

¯
tat I A

¯
NOVA I O

¯
ne-

way command. For this example, there are I = 3 levels corresponding to the
values Basal, DRTA, and Strat and n1 = n2 = n3 = 22. Suppose that we
have the values of the xij in C1 and the corresponding values of the categorical
explanatory variable in C2, where Basal is indicated by 1, DRTA by 2, and
Strat by 3. The S

¯
tat I A

¯
NOVA I O

¯
ne-way command together with the dialog

boxes shown in Displays 12.2.1, 12.2.2, and 12.2.3 (described below) produce
the output

Analysis of Variance for C1
Source DF SS MS F P
C2 2 20.58 10.29 1.13 0.329
Error 63 572.45 9.09
Total 65 593.03

S = 3.014 R-Sq = 3.47% R-Sq(adj) = 0.41%
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Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev -----+---------+---------+---------+-
1 22 10.500 2.972 (---------*----------)
2 22 9.727 2.694 (----------*----------)
3 22 9.136 3.342 (----------*----------)

-----+---------+---------+---------+-

Pooled StDev = 3.014 8.4 9.6 10.8 12.0
Fisher�s pairwise comparisons
Family error rate = 0.121
Individual error rate = 0.0500
Critical value = 1.998
Intervals for (column level mean) - (row level mean)

1 2
2 -1.043

2.589
3 -0.452 -1.225

3.180 2.407

in the Session window. The F test in the ANOVA table with a P -value of 0.329
indicates that the null hypothesis H0 : β1 = β2 = β3 would not be rejected.
Also, the estimate of σ is given by s = 3.014 and 95% conÞdence intervals are
plotted for the individual βi.
The dialog box of Display 12.2.1 carries out a one-way ANOVA for the data

in C1, with the levels in C2, and puts the ordinary residuals in a variable called
resi1 and the Þtted values in a variable called fits1. Note that because we
assume a constant standard deviation and the number of observations is the
same in each group, the ordinary residuals can be used in place of standardized
residuals. Note also that the ith Þtted value in this case is given by the mean
of the group to which the observation belongs.

Display 12.2.1: Dialog box for one-way ANOVA.

The dialog box of Display 12.2.2 is obtained by clicking on the Comparisons
button in the dialog box of Display 12.2.1. We use this dialog box to select a
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multiple comparison procedure. Here we have chosen to use the Fisher multiple
comparison method with an individual error rate on the comparisons of 5%.
This gives conÞdence intervals for the differences between the means using

ȳi − ȳj ± s
s
1

ni
+
1

nj
t∗

where s is the pooled standard deviation and t∗ is the 0.975 percentile of the
Student distribution with the error degrees of freedom. Note that with an indi-
vidual 95% conÞdence interval, the probability of not covering the true difference
(the individual error rate) is .05 but the probability of at least one of these three
not covering the difference (the family error rate) is 0.121. If you want a more
conservative family error rate, specify a lower individual error rate. For exam-
ple, an individual error rate of 0.02 speciÞes a family error rate of 0.0516 in this
example. We refer the reader to Help for details on the other available multi-
ple comparison procedures. In the output above, we see that a 95% conÞdence
interval for β1 − β2 is given by (−1.043, 2.589), and because this includes 0, we
conclude that there is no evidence against the null hypothesis H0 : β1 = β2. We
get the same result for the other two comparisons. Given that the F test has
already concluded that there is no evidence of any differences among the means,
there is no reason for us to carry out these individual comparisons, and we do
it only for illustration purposes here.

Display 12.2.2: Dialog box for selecting a multiple comparison procedure in a

one-way ANOVA.

The dialog box of Display 12.2.3 is obtained by clicking on the Graphs but-
ton in the dialog box of Display 12.2.1. We have requested a plot of side-by-side
boxplots of the data by level, which results in Display 12.2.4, the normal prob-
ability plot of the residuals that appears in Display 12.2.5 and a plot of the
residuals against the index in C2 that appears in Display 12.2.6. The residual
plots don�t indicate any problems with the model assumptions.
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Display 12.2.3: Dialog box for producing plots in a one-way ANOVA.

Display 12.2.4: Boxplots for the example.

Display 12.2.5: Normal probability plot for the example of this section after Þtting a

one-way ANOVA model.

Display 12.2.6: Plot of residuals against level for the example of this section after

Þtting a one-way ANOVA model.



One-Way Analysis of Variance 171

A one-way ANOVA can also be carried out using S
¯
tat I A

¯
NOVA I One-way

(U
¯
nstacked) and Þlling in the dialog box appropriately. This command is much

more limited in its features than S
¯
tat I A

¯
NOVA I O

¯
ne-way, however. So if

you have a worksheet with the samples for each level in columns, it would seem
better in general to use the Da

¯
ta I St

¯
ack command (Ma

¯
nip I St

¯
ack in Version

13) to place the data in one column and then use S
¯
tat I A

¯
NOVA I O

¯
ne-way.

Also available are analysis of means (ANOM) plots via S
¯
tat I A

¯
NOVA I

An
¯
alysis of Means (see Help for details on these) and plots of the means with

error bars (± one standard error of the observations at a level) via S
¯
tat I

A
¯
NOVA I I

¯
nterval Plots. Further, we can plot the means joined by lines using

S
¯
tat I A

¯
NOVA I M

¯
ain Effects plots as in Display 12.2.7. The dotted line is

the grand mean. Power calculations can be carried out using S
¯
tat I P

¯
ower and

Sample Size I O
¯
ne-way ANOVA and Þlling in the dialog box appropriately.

Display 12.2.7: Main effects plot for the example of this section.

The corresponding session command is given by onewayaov and has the general
syntax

onewayaov E1 E2 E3 E4

where E1 is a variable containing the responses, E2 is a variable containing
indices that indicate group membership, E3 is a variable to hold the residuals,
and E4 is a variable to hold the Þtted values. Of course, E3 and E4 can be
dropped if they are not needed. There are various subcommands that can
be used. The gboxplot subcommand produces side-by-side boxplots. The
gnormal subcommand produces a normal probability plot of the residuals. The
gvariables E1 subcommand results in a plot of the residuals against the variable
E1. We could also obtain side-by-side dotplots of the data using the gdotplot
subcommand, a histogram of the residuals using the ghistogram subcommand,
a plot of the residuals against observation order using the gorder subcommand,
and a plot of the residuals against the Þtted values using the gÞts subcommand.
The Þsher V1 subcommand gives conÞdence intervals for the differences between
the means, where V1 is the individual error rate. Also available for multiple
comparisons are the tukey, dunnett, and mcb subcommands. For example,
the commands
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MTB > onewayaov c1 c2 c3 c4;
SUBC> gboxplot;
SUBC> gnormal;
SUBC> gvariable c2;
SUBC> fisher.

result in the same output as we produced for the example of this section using
the menu commands. Here the Þts are stored in C4 and the residuals are stored
in C3.
The aovoneway command can be used for a one-way ANOVA when the

data for each level is in a separate column. For example, suppose that the
three samples for the example of this section are in columns C3�C5. Then the
command

MTB > aovoneway c3-c5

produces the same ANOVA table and conÞdence intervals for the means as
onewayaov. Only a limited number of subcommands are available with this
command, however.

12.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are
to be carried out using Minitab, and the exercises are designed to ensure that
you have a reasonable understanding of the Minitab material in this chapter.
Generally, you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. Generate a sample of 10 from each of the N(µi, σ) distributions for i =
1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, and σ = 3.
Carry out a one-way ANOVA and produce a normal probability plot of
the residuals and the residuals against the explanatory variable. Compute
.95 conÞdence intervals for the differences between the means. Compute an
approximate set of .95 simultaneous conÞdence intervals for the differences
between the means.

2. Generate a sample of 10 from each of the N(µi, σi) distributions for i =
1, . . . , 5, where µ1 = 1, µ2 = 1, µ3 = 1, µ4 = 1, µ5 = 2, σ1 = σ2 =
σ3 = σ4 = 3, and σ5 = 8. Carry out a one-way ANOVA and produce
a normal probability plot of the residuals and the residuals against the
explanatory variable. Compare the residual plots with those obtained in
Exercise II.12.1.

3. The F statistic in a one-way ANOVA, when the standard deviation σ
is constant from one level to another, is distributed noncentral F (k1, k2)
with noncentrality λ, where k1 = I − 1, k2 = n1 + · · ·nI − I,

λ =

PI
i=1 ni (µi − µ̄)2

σ2
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and µ̄ =
PI
i=1 niµi/

PI
i=1 ni. Using simulation, approximate the power of

the test in Exercise II.12.1 with level .05 and the values of the parameters
speciÞed and compared your results with exact results obtained from S

¯
tat

I P
¯
ower and Sample Size I O

¯
ne-way ANOVA.
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Chapter 13

Two-Way Analysis of
Variance

New Minitab command discussed in this chapter

S
¯
tat I A

¯
NOVA I T

¯
wo-way

This chapter deals with methods for making inferences about the relationship
existing between a single numeric response variable and two categorical explana-
tory variables. The S

¯
tat I A

¯
NOVA I T

¯
wo-way command is used to carry out

a two-way ANOVA.

We write the two-way ANOVA model as xijk = µij+Nijk, where i = 1, . . . , I
and j = 1, . . . , J index the levels of the categorical explanatory variables and k =
1, . . . , nij indexes the individual observations at each treatment (combination
of levels), µij is the mean response at the ith level and the jth level of the Þrst
and second explanatory variable, respectively, and the errors Nijk are a sample
from the N(0, σ) distribution. Based on the observed xijk, we want to make
inferences about the unknown values of the parameters µ11, . . . , µIJ , σ.

13.1 The Two-Way ANOVA Command

We consider a generated example, where I = J = 2, µ11 = µ21 = µ12 = µ22 =
1, σ = 2, and n11 = n21 = n12 = n22 = 5. The Nijk are generated as a sample
from the N(0, 2) distribution, and we put xijk = µij + Nijk for i = 1, . . . , I
and j = 1, . . . , J and k = 1, . . . , nij. Note that the S

¯
tat I A

¯
NOVA I T

¯
wo-way

command requires balanced data; i.e., all the nij must be equal. We pretend that
we don�t know the values of the parameters and carry out a two-way analysis
of variance. If the xijk are in C1, the values of i in C2 and the values of j in
C3, the dialog box of Display 13.1.1.
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Display 13.1.1: Dialog box for producing a two-way analysis of variance.

produces the following output.

Analysis of Variance for C1
Source DF SS MS F P
C2 1 0.39 0.39 0.07 0.790
C3 1 3.43 3.43 0.65 0.432
Interaction 1 4.01 4.01 0.76 0.396
Error 16 84.44 5.28
Total 19 92.26

Individual 95% CI
C2 Mean -+---------+---------+---------+---------+
1 1.49 (-------------------*------------------)
2 1.77 (------------------*------------------)

-+---------+---------+---------+---------+
0.00 0.80 1.60 2.40 3.20

Individual 95% CI
C3 Mean ----+---------+---------+---------+-------
1 2.05 (--------------*---------------)
2 1.22 (--------------*---------------)

----+---------+---------+---------+-------
0.00 1.00 2.00 3.00

We see from this that the null hypothesis of no interaction is not rejected (P -
value = .396) and neither is the null hypothesis of no effect due to the C2 factor
(P -value = .790) nor the null hypothesis of no effect due to factor C3 (P -value
= .432).
Note that by checking the Display means boxes in the dialog box of Display

13.1.1 we have caused 95% conÞdence intervals to be printed for the response
means at each value of C2 and each value of C3, respectively. These cell means
are relevant only when we decide that there is no interaction, as is the case here,
and we note that all the intervals contain the true value 1 of these means.
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We also checked the Store residuals and Store Þts in the dialog boxes of
Display 13.1.1. This results in the (ordinary) residuals being stored in C4 and
the Þtted values (cell means) being stored in C5. If these columns already had
entries the next two available columns would be used instead.
If we want to Þt the model without any interaction, supposing we know this

to be true, we can check the Fit additive model box in the dialog box of Display
13.1.1. This is acceptable only in rare circumstances, however, as it is unlikely
that we will know that this is true.
Various graphs are also available via the Graphs button in the dialog box

of Display 13.1.1. Clicking on this results in the Dialog box shown in Display
13.1.2. Here we have asked for a normal probability plot of the (ordinary)
residuals and a plot of the (ordinary) residuals versus the variables C2 and C3.
Recall that with balance it is acceptable to use the ordinary residuals rather than
the standardized residuals. We haven�t reproduced the corresponding plots here
but, as we might expect, they gave no grounds for suspecting the correctness of
the model.

Display 13.1.2: Dialog box for producing various residual plots obtained via the

Graphs button in the dialog box of Display 13.1.1.

If we conclude that there is an interaction then we must look at the individ-
ual IJ cell means to determine where the interaction occurs. A plot of these
cell means is often useful in this regard. Also available are analysis of means
(ANOM) plots via S

¯
tat I A

¯
NOVA I An

¯
alysis of Means. In addition, we can

plot the marginal means joined by lines using S
¯
tat I A

¯
NOVA I M

¯
ain Effects

Plot and plot the cell means joined by lines using S
¯
tat I A

¯
NOVA I Inte

¯
raction

Plot using the dialog box of Display 13.1.3 with the output in Display 13.1.4.
Note that while the plot seems to indicate an interaction, this is not con-

Þrmed by the statistical test. Power calculations can be carried out using S
¯
tat

I P
¯
ower and Sample Size I 2-Level F

¯
actorial Design and Þlling in the dialog

box appropriately. Commands are available in Minitab for analyzing unbal-
anced data and for situations where there are more than two factors where
some factors are continuous and some categorical, and so on.



178 Chapter 13

Display 13.1.3: Dialog box for obtaining the interaction plot of Display 13.1.4.
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Display 13.1.4: Plot of cell means in two-way ANOVA simulated example.

The corresponding session command for carrying out a two-way ANOVA is
given by twowayaov. For example, the command

MTB > twowayaov c1 c2 c3 c4 c5;
SUBC> gnormal;
SUBC> gvariable c2 c3;
SUBC> means c2 c3.�

results in the same output as above. The gnormal subcommand results in
a normal probability plot of the residuals being plotted while the gvariables
subcommand results in a plot of the residuals against each of the factors C2
and C3. The ghistogram, gÞts, and gorder subcommands are also available
for a histogram of the residuals, the residuals against the Þtted values, and
the residuals against observation order, respectively. The means subcommand
causes the estimates of marginal means for each level of C2 and C3 to be printed
together with 95% conÞdence intervals. If we want to Þt the model without any
interaction, supposing we know this to be true, then the additive subcommand
is available to do this.
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13.2 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to be
carried out using Minitab and the exercises are designed to ensure that you have
a reasonable understanding of the Minitab material in this chapter. Generally,
you should be using Minitab to do all the computations and plotting required
for the problems in IPS.

1. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry out
a two-way analysis. Plot the cell means (an interaction effect plot). Do
your conclusions agree with what you know to be true?

2. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = 3, µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry out
a two-way analysis. Plot the cell means (an interaction effect plot). Do
your conclusions agree with what you know to be true?

3. Suppose I = J = 2, µ11 = µ21 = 1, µ12 = µ22 = 2, σ = 2, and n11 =
n21 = n12 = n22 = 10. Generate the data for this situation, and carry
out a two-way analysis. Form 95% conÞdence intervals for the marginal
means. Repeat your analysis using the additive model and compare the
conÞdence intervals. Can you explain your results?
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Chapter 14

Bootstrap Methods and
Permutation Tests

This chapter is concerned with computationally intensive inference methods
that are sometimes applicable when methods based on strong assumptions, such
as normality, cannot be used because it is clear that the assumptions are not
satisÞed. These methods are based on repeated sampling from a column of Þxed
data. Bootstrap sampling requires that we sample this column with replacement
and permutation tests require that we sample the column without replacement.
In the next sections we describe how to use Minitab to accomplish this.
At this point Minitab does not have built-in commands to implement boot-

strap sampling or permutation tests. For this we need some of the programming
features of Minitab as discussed in Appendix D. Actually you will not have to
learn how to program as we will provide the necessary code and explain how to
use it in the following sections. It is a simple matter to modify this code so that
different statistics can be used.
A Minitab program is called a macro and must start with the statement

gmacro and end with the statement endmacro. The Þrst statement after gmacro
gives a name to the program. Comments in a program, put there for explanatory
purposes, start with note.
If the Þle containing the program is called prog.txt and this is stored in

the root directory of a disk drive called c, then the Minitab command

MTB> %c:/prog.txt

will run the program. Any output will either be printed in the Session window (if
you have used a print command) or stored in the Minitab worksheet. Basically,
this is all you need to know to run the programs discussed in this chapter.
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14.1 Bootstrap Sampling

Suppose the data in the following table of n = 15 values is stored in C1 and we
wish to calculate the bootstrap distribution of the sample median that we are
using to estimate the mean of the population distribution.

0.2 3.0 2.2 1.0 4.0
0.5 2.3 −1.3 3.1 −1.0
5.8 0.4 1.3 −2.7 −8.6

The sample median for this data is given by 1.00.
The following Minitab code generates 1000 bootstrap samples from the data

in C1, calculates the median of each of these samples, and then calculates the
sample mean and variance of these medians.

gmacro
bootstrapping
base 34256734
note - original sample is stored in c1
note - bootstrap sample is placed in c2 (each one overwritten)
note - medians of bootstrap samples are stored in c3
note - k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:1000
note - the upper bound for k2 = the number of bootstrap
note - samples generated, here this is 1000 and can be changed
sample 15 c1 c2;
replace.
note - you must replace the following line with the Minitab
note commands for whatever statistic you want to bootstrap
let c3(k2)=median(c2)
enddo
note - k2 equals the mean of the bootstrapped median
let k2=mean(c3)
note - k3 equals the sample variance of the bootstrapped median
let k3=(stdev(c3))**2
print k2 k3
endmacro

To change the number of bootstrap samples we generate we must change the
ninth line. Currently it reads

do k2=1:1000

so that we are generating 1000 bootstrap samples. If we want to generate 10,000
bootstrap samples, then we must change this to

do k2=1:10000
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and of course any other number can be substituted. Be careful though, as the
bigger we choose this number the longer we have to wait for the computations
to be carried out.
The entire bootstrap sample of medians is stored in C3. So we can plot

this in a histogram to get some idea of what the distribution looks like that the
bootstrap procedure is sampling from.
We put the above code in a Þle bootstrap.txt and stored this in the main

directory of the c drive. Then the command

MTB > %c:/bootstrap.txt

runs these commands and produces the output

K2 1.06890
K3 0.687270

which gives the estimate bootstrap mean and bootstrap variance as 1.06890 and
0.687270, respectively. So the bias is 1.06890−1.00 = 0.0689, which is relatively
small.
Using the G

¯
raph I H

¯
istogram command on the values stored in C3 we

produced the plot in Display 14.1.1. We can see from this that the bootstrap
distribution of the median is not very normal looking.
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Display 14.1.1: Histogram of 1000 bootstrap sample medians.

There are a number of built-in Minitab functions, such as median, whose
bootstrap distribution we are often interested in. There are others, however, for
which we must do a bit of programming. For example, we must program the
various trimmed means. If we want an α-trimmed mean, where α ∈ [0, 1] , then
we remove the m smallest observations and the m largest observations from the
sample and calculate the mean of the rest, where m is the closest integer to αn.
We now provide an example of obtaining the bootstrap distribution of a

25%-trimmed mean of the data given above. Note that in this case, since
(.25)(15) = 3.75, we take m = 4, and this implies that we remove the ob-
servations −8.6,−2.7,−1.3, 3.1, 4.0 and 5.8 from the sample. The .25-trimmed
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mean is then given by 1.10. We then used the following code to estimate the
bootstrap distribution of the .25-trimmed mean.

gmacro

bootstrapping

base 34256734

note - original sample is stored in c1

note - bootstrap sample is placed in c2 (each one overwritten)

note - the sorted bootstrap sample is then put in c2

note - 25% trimmed means of bootstrap samples are computed and

note - stored in c3 for more analysis

do k2=1:1000

sample 15 c1 c2;

replace.

sort c2 c2

let k4=0

do k3=4:12

let k4=k4+c2(k3)

enddo

let c3(k2)=k4/9

enddo

let k2=mean(c3)

let k3=(stdev(c3))**2

print k2 k3

endmacro

Note that the code

let k4=0

do k3=4:12

let k4=k4+c2(k3)

enddo

let c3(k2)=k4/9

calculates the .25-trimmed mean for this data and needs to be changed ap-
propriately for other trimmed means and other data sets. Running this pro-
gram we obtained the estimated mean of the bootstrap distribution as 1.05517
and the estimated bootstrap variance as 0.531869. So in this case the bias is
1.05517− 1.10 = −0.04483, which is reasonably small.
Using the G

¯
raph I H

¯
istogram command on the values stored in C3 we

produced the plot in Display 14.1.2. We can see from this that the bootstrap
distribution of the median is much more normal looking, although still somewhat
skewed to the left.
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Display 14.1.2: Histogram of 1000 bootstrap sample .25-trimmed means.

Ignoring the skewness of the bootstrap distribution, an approximate .95-
conÞdence interval for the population mean based on the t distribution is then
given by

1.10± t.975(14)
√
0.531869 = 1.10− (2.14479)

√
0.531869

= [−0.46418, 2.6642].

To calculate the bootstrap percentile conÞdence intervals we Þrst sort the
bootstrap distribution values in C3 and Þnd the .025 and the .975 percentiles
of this sample. The commands

MTB > sort c3 c4
MTB > set c5
DATA> 1:1000
DATA> end
MTB > let c5=c5/1000

place the sorted values in C4 and then calculates the proportion of values less
than or equal to each value and places these proportions in C5. We then record
the values in C4 that correspond to .025 and .975 in C5. In this case we obtained
(−1.0, 3.0) as the .95-bootstrap percentile conÞdence interval. We note that this
interval is somewhat wider than the interval based on the t distribution.

14.2 Permutation Tests

As with bootstrapping Minitab does not have built-in commands to carry out
permutation tests. Again, however, it is very easy to program Minitab to im-
plement these tests.
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We illustrate how to implement a permutation test using Example 14.11 in
IPS. as given in the following table (T stands for Treatment and C for Control).

T T T T C C C C
24 61 59 46 42 33 46 37
43 44 52 43 43 41 10 42
58 67 62 57 55 19 17 55
71 49 54 26 54 60 28
43 53 57 62 20 53 48
49 56 33 37 85 42

We want to test the null hypothesis that the mean of the distribution for the
treatment group is the same as the mean of the distribution for the control
group. Now suppose that we have the values stored in C2 with an index stored
in C1 that indicates whether the value is from the Treatment group or from the
Control group. Then the commands

MTB > unstack c2 c3 c4;
SUBC> subscripts c1.
MTB > let k1=mean(c3)
MTB > let k2=mean(c4)
MTB > let k3=k1-k2
MTB > print k3
Data Display
K3 9.95445

calculate the means of the T group and the C group, the difference of the two
means and then prints this quantity. We obtain 9.95445 as the difference of the
means.
The following commands compute the P -value based on permutation distri-

bution of the difference of means to test the null hypothesis that the means of
the T and C groups are the same against the alternative that the mean of the
T group is greater than the mean of the C group

gmacro
permutation
base 468798
note - index is stored in c1
note - original samples are stored in c2
note - the following commands compute the difference of the note -
means for the original samples
note - and stores this difference in k10
unstack c2 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k10=k2-k3
note - permuted samples are stored in c3
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note - unstacked permuted samples are stored in c4 and c5
note - the difference in means is stored in c6
note - the value 1 is stored in c7 if difference in means of
note - these samples is greater than k10 and the value 0 is
note - stored there otherwise
do k1=1:1000
sample 44 c2 c3
unstack c3 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k4=k2-k3
let c6(k1) = k4
let c7(k1) = k4 >= k10
enddo
note - the mean of c7 is the proportion of the differences of
note - means in the permutation distribution that are greater
note - than or equal to the observed difference
let k5=mean(c7)
print k10 k5
endmacro.

The output from the above program is

K10 9.95445
K5 0.0210000

and this tells us that the P -value is .021 and so we can conclude that we have
evidence against the null hypothesis.
Note that the above program stores the sample from the permutation distri-

bution in C6 so we can analyze this further. For example, Display 14.2.1 gives
a histogram of the 1000 differences of means as obtained in the above program.
We see that this is reasonably normal looking.
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Display 14.2.1: Histogram of 1000 differences of means obtained by randomly

permuting the samples.
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A two-sided permutation test can be carried out in this case by simply computing
the proportion of differences in are greater in absolute value than the absolute
value of the observed difference, which in this case equals |9.95445| = 9.95445.
The following commands accomplish this.

do k1=1:1000
sample 44 c2 c3
unstack c3 c4 c5;
subscripts c1.
let k2=mean(c4)
let k3=mean(c5)
let k4=k2-k3
let c6(k1) = k4
let c7(k1) = abs(k4) >= abs(k10)
enddo
let k5=mean(c7)

This produced the output

K5 0.0330000

so the results are signiÞcant when using the two-sided alternative as well.
For the matched pairs permutation test for comparing treatment A to treat-

ment B we randomly assign an individual�s A measurement to A or B, and the B
measurement is assigned the other label. We then compare the observed mean
difference with the distribution of these differences obtained from all possible
random assignments. The following code carries out the two sided matched pair
permutation test when we have 10 observations with the A measurements stored
in C1 and the B measurements stored in C2.

gmacro
permutationmatched
base 468798
note - first measurement is stored in c1
note - second measurement is stored in c2
note - differences stored in c3
note - k2 = observed mean difference
let c3=c1-c2
let k2=mean(c3)
note - randomly choose which observations in c1 will be
note - labelled A (10 values generated from Bernoulli(.5))
note - whenever a 1 occurs in c4 multiply entry in c3 by 1
note - otherwise multiply by -1, store in c6
note - and put mean difference in k4 and store in c7
do k1=1:1000
random 10 c4;
bernoulli .5.
let c5=-1+2*c4
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let c6=c5*c3
let k3=mean(c6)
let c7(k1) = k3
let c8(k1) = abs(k3) >= abs(k2)
enddo
let k4=mean(c8)
print k2 k4
endmacro

14.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to be
carried out using Minitab and the exercises are designed to ensure that you have
a reasonable understanding of the Minitab material in this chapter. Generally,
you should be using Minitab to do all the computations and plotting required
for the problems in IPS.

1. Generate a sample of n = 20 from the N(0, 1) distribution. Approximate
the bootstrap distribution of x̄ by generating 1000 bootstrap samples. Es-
timate the bias, estimate the bootstrap variance and plot the 1000 values
of the sample mean in a density histogram. Calculate, and compare, .95
conÞdence intervals for the population mean based on the t distribution
and bootstrap distribution.

2. Generate a sample of n = 20 from the Chi-squared(1) distribution. Ap-
proximate the bootstrap distribution of x̄ by generating 1000 bootstrap
samples. Estimate the bias, estimate the bootstrap variance and plot the
1000 values of the sample mean in a density histogram. Calculate, and
compare, .95 conÞdence intervals for the population mean based on the t
distribution and bootstrap distribution.

3. Generate a sample of n = 20 from the N(0, 1) distribution. Approximate
the bootstrap distribution of the .1-trimmed mean by generating 1000
bootstrap samples. Estimate the bias, estimate the bootstrap variance
and plot the 1000 values of the .1-trimmed mean in a density histogram.
Calculate, and compare, .95 conÞdence intervals for the population .1-
trimmed mean based on the t distribution and bootstrap distribution.

4. Generate a sample of n = 20 from the Chi-squared(1) distribution. Ap-
proximate the bootstrap distribution of the .1-trimmed mean by gener-
ating 1000 bootstrap samples. Estimate the bias, estimate the bootstrap
variance and plot the 1000 values of the .1-trimmed mean in a density
histogram. Calculate, and compare, .95 conÞdence intervals for the popu-
lation .1-trimmed mean based on the t distribution and bootstrap distri-
bution.
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5. Generate a sample of 10 from the N(0, 1) distribution and a sample of 15
from the N(2, 1) distribution and carry out a two-sided permutation test
that the difference of means is 0. Compare the P -value obtained with that
obtained from a two-sided t test.

6. Generate a sample of 10 from the Student(1) distribution and a sample
of 15 from the Student(1) + 2 distribution (generate a sample from the
Student(1) and add 2 to each sample element) and carry out a two-sided
permutation test that the difference of means is 0. Compare the P -value
obtained with that obtained from a two-sided t test.

7. Generate a sample of 10 from the N(0, 1) distribution and a sample of
10 from the N(2, 1) distribution and carry out a two-sided matched pair
permutation test that the difference of means is 0. Compare the P -value
obtained with that obtained from a two-sided matched pair t test.
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Nonparametric Tests

New Minitab commands discussed in this chapter

S
¯
tat I N

¯
onparametrics I K

¯
ruskal-Wallis

S
¯
tat I N

¯
onparametrics I M

¯
ann-Whitney

S
¯
tat I N

¯
onparametrics I 1-Sample W
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This chapter deals with inference methods that do not depend upon the as-
sumption of normality. These methods are sometimes called nonparametric or
distribution free methods. Recall that we discussed a distribution-free method
in Section 7.4, where we presented the S

¯
tat I N

¯
onparametrics I 1

¯
-Sample Sign

command for the sign conÞdence interval and sign test for the median. Recall
also the Da

¯
ta I R

¯
ank command in I.10.6, which can be used to compute the

ranks of a data set.

15.1 The Wilcoxon Rank Sum Procedures

The Mann-Whitney test for a difference between the locations of two distribu-
tions is equivalent to the Wilcoxon rank sum test in the following sense. Suppose
that we have two independent samples y11, . . . , y1n1 and y21, . . . , y2n2 from two
distributions that differ at most in their locations as represented by their me-
dians. The Mann-Whitney statistic U is the number of pairs (y1i, y2j) where
y1i > y2j, while the Wilcoxon rank sum test statistic W is the sum of the ranks
from the Þrst sample when the ranks are computed for the two samples consid-
ered as one sample combined. It can be shown that W = U + n1(n1+1)/2 and
so the test procedures based on these statistics are equivalent.
For Example 15.1 of IPS, we store the four values 166.7, 172.2, 165.0, and

176.9 of sample 1 in C1 and the four values 158.6, 176.4, 153.1, and 156.0
of sample 2 in C2. The S

¯
tat I N

¯
onparametrics I M

¯
ann-Whitney command,

implemented as in the dialog box of Display 15.1,
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Display 15.1: Dialog box for implementing the Mann-Whitney command.

leads to the output

Mann-Whitney Confidence Interval and Test
C1 N = 4 Median = 169.45
C2 N = 4 Median = 157.30
Point estimate for ETA1-ETA2 is 11.30
93.9 Percent CI for ETA1-ETA2 is (-9.70,20.90)
W = 23.0
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0970
Cannot reject at alpha = 0.05

which indicates that the test of H0 : the medians of the two distributions are
identical versus Ha : the median of the Þrst distribution is greater than the
median of the second gives a P -value of .0970. Also, an estimate of 11.3 is
produced for the difference in the medians, and we asked for a 90% conÞdence
interval for this difference by placing 90 in the ConÞdence level box. Note that
exact conÞdences cannot be attained due to the discrete distribution followed
by the statistic U. The Mann-Whitney test requires the assumption that the
two distributions we are sampling from have the same form.
The corresponding session command is given by mann-whitney. For ex-

ample, the command

MTB > mann-whitney 90 c1 c2;
SUBC> alternative 1.

leads to the above output. Note that we have placed 90 on the command line
to indicate that we want a 90% conÞdence interval. If this value is left out, a
default 95% conÞdence interval is computed. Also available are the one-sided
test of H0 : the medians of the two distributions are identical versus Ha :
the median of the Þrst distribution is smaller than the median of the second,
using the subcommand alternative −1 and the two-sided test is obtained if no
alternative subcommand is employed.
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15.2 The Wilcoxon Signed Rank Procedures

The Wilcoxon signed rank test and conÞdence interval are used for inferences
about the median of a distribution. The Wilcoxon procedures are based on
ranks, which is not the case for the sign procedures discussed in Section 7.4. Con-
sider the data of Example 15.8 in IPS where the differences between two scores
have been recorded as .37,−.23, .66,−.08,−.17 in C1. The S

¯
tatIN

¯
onparametrics

I 1-Sample W
¯
ilcoxon command, implemented as in the dialog box in Display

15.2,

Display 15.2: Dialog box for implementing the Wilcoxon signed rank test.

leads to the output

Test of median = 0.000000 versus median > 0.000000
N for Wilcoxon Estimated

N Test Statistic P Median
C1 5 5 9.0 0.394 0.1000

which gives the P -value .394 for testing H0 : the median of the difference is 0
versus Ha : the median of the difference is greater than 0. If instead we had
Þlled in the ConÞdence interval button and placed 90 in the Level box of the
dialog box in Display 15.2, we would have obtained the output

Estimated Achieved
N Median Confidence Confidence Interval

C1 5 0.100 89.4 (-0.200, 0.515)

which provides a 90% conÞdence interval for the median. Note that theWilcoxon
signed rank procedures for the median require an assumption that the response
values (in this case the difference) come from a distribution symmetric about
its median.
The corresponding session commands are given by wtest and winterval

for tests and conÞdence intervals respectively. The general syntax of the wtest
command is

wtest V E1
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where V is the hypothesized value of the median, with 0 being the default value,
and E1 is the column containing the data. For example, the command

MTB > wtest c1;
SUBC> alternative 1.

produces the above output for the test. The general syntax of the winterval
command is

winterval V E1

where V is the conÞdence level, with 0.95 being the default value, and E1 is the
column containing the data.

15.3 The Kruskal-Wallis Test

The Kruskal-Wallis test is the analog of the one-way ANOVA in the nonpara-
metric setting. Suppose the data for Example 15.13 in IPS are in C1 and C2,
where C1 contains the corn yield in bushels per acre and C2 is number of weeds
per meter. The S

¯
tat I N

¯
onparametrics I

¯
Kruskal-Wallis command, as imple-

mented in Display 15.3,

Display 15.3: Dialog box for implementing the Kruskal-Wallis test.

produces the output

Kruskal-Wallis Test on C1
C2 N Median Ave Rank Z
0 4 169.4 13.1 2.24
1 4 163.6 8.4 -0.06
3 4 157.3 6.2 -1.09
9 4 162.6 6.2 -1.09
Overall 16 8.5

H = 5.56 DF = 3 P = 0.135
H = 5.57 DF = 3 P = 0.134 (adjusted for ties)
* NOTE * One or more small samples
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which gives a P -value of .135 for testing H0 : each sample comes from the
same distribution versus Ha : at least two of the samples come from different
distributions. Note that the validity of the Kruskal-Wallis test relies on the
assumption that the distributions being sampled from all have the same form.
The corresponding session command is given by kruskal-wallis. For exam-

ple, the command

MTB > kruskal-wallis c1 c2

also produces the above output. The general syntax of the kruskal-wallis
command is

kruskal-wallis E1 E2

where E1 contains the data and E2 contains the levels of the factor.

15.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to be
carried out using Minitab and the exercises are designed to ensure that you have
a reasonable understanding of the Minitab material in this chapter. Generally,
you should be using Minitab to do all the computations and plotting required
for the problems in IPS.

1. Generate a sample of n = 10 from the N(0, 1) distribution and compute
the P -value for testing H0 : the median is 0 versus Ha : the median is
not 0, using the t test and the Wilcoxon signed rank test. Compare the
P -values. Repeat this with n = 100.

2. Generate a sample of n = 10 from the N(0, 1) distribution and compute
95% conÞdence intervals for the median, using the t conÞdence interval
and the Wilcoxon signed rank conÞdence intervals. Compare the lengths
of the conÞdence intervals. Repeat this with n = 100.

3. Generate two samples of n = 10 from the Student(1) distribution and add
1 to the second sample. Test H0 : the medians of the two distributions
are identical versus Ha : the medians are not equal using the two sample
t test and using the Mann-Whitney test. Compare the results.

4. Generate a sample of 10 from each of the N(1, 2), N(2, 2), and N(3, 1)
distributions. Test for a difference among the distributions using a one-
way ANOVA and using the Kruskal-Wallis test. Compare the results.

5. Generate 10 scores for 10 brands from the N(µij , σ) distributions for i =
1, 2 and j = 1, 2, where µ11 = µ21 = 1 and µ12 = µ22 = 2, and treat
each test for no effect due to brand using a two-way ANOVA with the
assumption of no interaction and also using the Friedman test. Compare
the results.
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Logistic Regression

New Minitab commands discussed in this chapter
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¯
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¯
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¯
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¯
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This chapter deals with the logistic regression model. This model arises when
the response variable y is binary, i.e., takes only two values, and we have a
number of explanatory variables x1, . . . , xk.

16.1 The Logistic Regression Model

The regression techniques discussed in Chapters 10 and 11 require that the
response variable y be a continuous variable. In many contexts, however, the
response is discrete and in fact binary; i.e., taking the values 0 and 1. Let p
denote the probability of a 1. This probability is related to the values of the
explanatory variables x1, . . . , xk.
We cannot, however, write this as p = β0 + β1x1 + . . . + βkxk because the

right-hand side is not constrained to lie in the interval [0, 1], which it must if it
is to represent a probability. One solution to this problem is to employ the logit
link function, which is given by

ln

µ
p

1− p
¶
= β0 + β1x1 + · · ·+ βkxk

and this leads to the equations

p

1− p = exp {β0 + β1x1 + · · ·+ βkxk}
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and

p =
exp {β0 + β1x1 + · · ·+ βkxk}

1 + exp {β0 + β1x1 + · · ·+ βkxk}
for the odds p/(1 − p) and probability p, respectively. The right-hand side of
the equation for p is now always between 0 and 1. Note that logistic regres-
sion is based on an ordinary regression relation between the logarithm of the
odds in favor of the event occurring at a particular setting of the explanatory
variables and the values of the explanatory variables x1, . . . , xk. The quantity
ln (p/(1− p)) is referred to as the log odds.
The procedure for estimating the coefficients β0, β1, . . . , βk using this rela-

tion and carrying out tests of signiÞcance on these values is known as logistic
regression. Typically, more sophisticated statistical methods than least squares
are needed for Þtting and inference in this context, and we rely on software such
as Minitab to carry out the necessary computations.
In addition, other link functions are available in Minitab are often used. In

particular, the probit link function is given by

Φ−1 (p) = β0 + β1x1 + · · ·+ βkxk
where Φ is the cumulative distribution function of the N(0, 1) distribution, and
this leads to the relation

p = Φ (β0 + β1x1 + · · ·+ βkxk)
which is also always between 0 and 1. Choice of the link function can be made
via a variety of goodness-of-Þt tests available in Minitab, but we restrict our
attention here to the logit link function.

16.2 Example

Suppose that we have the following 10 observations in columns C1�C3

Row C1 C2 C3
1 0 -0.65917 0.43450
2 0 0.69408 0.48175
3 1 -0.28772 0.08279
4 1 0.76911 0.59153
5 1 1.44037 2.07466
6 0 0.52674 0.27745
7 1 0.38593 0.14894
8 1 -0.00027 0.00000
9 0 1.15681 1.33822
10 1 0.60793 0.36958

where the response y is in C1, x1 is in C2, and x2 is in C3 and note that x2 = x
2
1.

We want to Þt the model

ln

µ
p

1− p
¶
= β0 + β1x1 + β2x2
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and conduct statistical inference concerning the parameters of the model.
Fitting and inference is carried out in Minitab using S

¯
tat I R

¯
egression I

Binary L
¯
ogistic Regression and Þlling in the dialog box as in Display 16.1.

Display 16.1: Dialog box for implementing a binary logistic regression.

Here, the Response box contains c1 and the Model box contains C2 and C3.
Clicking on the Results button brings up the dialog box in Display 16.2.

Display 16.2: The dialog box resulting from clicking on the R
¯
esults button in the

dialog box of Display 16.1.

We have Þlled in the radio button Response information, regression table, etc.,
as this controls the amount of output. The default output is more extensive and
we chose to limit this. The following output is obtained.
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Link Function: Logit
Response Information

Variable Value Count
C1 1 6 (Event)

0 4
Total 10

Logistic Regression Table
Odds 95% CI

Predictor Coef StDev Z P Ratio Lower Upper
Constant 0.522797 0.903136 0.58 0.563
C2 0.739948 1.60504 0.46 0.645 2.10 0.09 48.71
C3 -0.779605 1.58437 -0.49 0.623 0.46 0.02 10.23

Log-Likelihood = -6.598
Test that all slopes are zero: G = 0.265, DF = 2,

P-Value = 0.876

This gives estimates of the coefficients and their standard errors and the P -value
for H0 : β0 = 0 versus Ha : β0 6= 0 as 0.563, the P -value for H0 : β1 = 0 versus
Ha : β1 6= 0 as 0.643, and the P -value for H0 : β2 = 0 versus Ha : β2 6= 0 as
0.623. Further, the test of H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0 has
P -value .876. In this example, there is no evidence of any nonzero coefficients.
Note that p = .5 when β0 = β1 = β2 = 0
Also provided in the output is the estimate 2.10 for the odds ratio for x1 (C2)

and a 95% conÞdence interval (.09, 48.71) for the true value. The odds ratio for
x1 is given by exp (β1) , which is the ratio of the odds at x1 + 1 to the odds at
x1 when x2 is held Þxed or when β2 = 0. Because there is evidence that β2 = 0
(P -value = .623), the odds ratio has a direct interpretation here. Note, however,
that if this wasn�t the case the odds ratio would not have such an interpretation
as it doesn�t makes sense for x2 to be held Þxed when x1 changes in this example
as they are not independent variables. Similar comments apply to the estimate
0.46 for the odds ratio for x2 (C3) and the 95% conÞdence interval (.02, 10.23)
for the true value of this quantity.
Many other aspects of Þtting logistic regression models are available in

Minitab and we refer the reader to Help for a discussion of these. Also avail-
able in Minitab are ordinal logistic regression, when the response takes more
than two values and these are ordered, and nominal logistic regression, when
the response takes more than two values and these are unordered. These can
be accessed via S

¯
tat I R

¯
egression I Ordinal L

¯
ogistic Regression and S

¯
tat I

R
¯
egression I Nominal L

¯
ogistic Regression, respectively.

16.3 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to be
carried out using Minitab and the exercises are designed to ensure that you have
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a reasonable understanding of the Minitab material in this chapter. Generally,
you should be using Minitab to do all the computations and plotting required
for the problems in IPS.

1. Generate a sample of 20 from the Bernoulli(.25) distribution. Pretending
that we don�t know p, compute a 95% conÞdence interval for this quantity.
Using this conÞdence interval, form 95% conÞdence intervals for the odds
and the log odds.

2. Let x take the values −1, −.5, 0, .5, and 1. Plot the log odds

ln

µ
p

1− p
¶
= β0 + β1x

against x when β0 = 1 and β1 = 2. Plot the odds and the probability p
against x.

3. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(px) distribution where

px =
exp{1 + 2x}

1 + exp {1 + 2x}
and let these values be the y response values. Carry out a logistic regres-
sion analysis of this data using the model.

ln

µ
px

1− px

¶
= β0 + β1x

Compute a 95% conÞdence interval for β1 and determine if it contains the
true value. Similarly, form a 95% conÞdence interval for the odds ratio
when x increases by 1 unit and determine if it contains the true value.

4. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(px) distribution where

px =
exp{1 + 2x}

1 + exp {1 + 2x}
and let these values be the y response values. Carry out a logistic regres-
sion analysis of this data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β2 = 0 versus Ha : β2 6= 0. Form a 95%
conÞdence interval for the odds ratio for x. Does it make sense to make
an inference about this quantity in this example? Why or why not?
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5. Let x take the values −1, −.5, 0, .5, and 1. At each of these values,
generate a sample of four values from the Bernoulli(.5) distribution. Carry
out a logistic regression analysis of this data using the model

ln

µ
px

1− px

¶
= β0 + β1x+ β2x

2

Test the null hypothesis H0 : β1 = β2 = 0 versus Ha : β1 6= 0 or β2 6= 0.
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Statistics for Quality:
Control and Capability

New Minitab commands discussed in this chapter
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Control charts are used to monitor a process to ensure that it is under statistical
control. There is a wide variety of such charts depending on the statistic used
for the monitoring and the test used to detect when a process is out of control.

17.1 Producing x̄ Charts

Suppose we have placed a random sample of 100 from the N(5, 2) distribution
in C1 and we want an x̄ chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I Variables Charts for S
¯
ubgroups I X

¯
bar... brings up the dialog box

shown in Display 17.1.1. Here we have indicated that the data is in C1 and
that we want the sample averages to be based on 5 observations (so there are
20 means). To control the placement of the LCL and UCL limits we clicked on
Xbar Options ... to bring up the dialog box shown in Display 17.1.2. Here we
asked that the center line be drawn at 5 and the standard deviation be set to 2
so that the LCL is 5− 3(2/√5) = 2.3167 and the UCL is 5+3(2/√5) = 7.6833.
If we do not specify these values, then Minitab will estimate them from

the data using the sample mean for the center line and the average of the
sample standard deviations for the subgroups to determine the LCL and UCL.
In particular, if s̄ denotes the average standard deviation then the LCL equals
x̄−3s̄/c4 and the UCL equals x̄+3s̄/c4, where c4 is the constant deÞned in IPS
that corrects for the bias in s, as an estimator of σ.

203
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Display 17.1.1: Dialog box to create an x̄ chart.

Display 17.1.2: Dialog box to control placement of center line and limits in an x̄
chart.

Clicking on OK in both of these dialog boxes produces the x̄ chart shown in
Display 17.1.3. As expected, all the sample means lie within the limits.
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Display 17.1.3: An x̄ chart for a random sample of 100 from the N(5, 2) distribution.

We observe that the dialog box in Display 17.1.2 contains a tab labelled
Tests. Clicking on this produces the dialog box shown in Display 17.1.4 where
we have indicated that we want two tests to be carried out, namely, 1 point >
3 standard deviations from center line and 9 points in a row on same side of
center line. Clearly, the control chart shown in Display 17.1.3 passes both of
these tests. Suppose, however, that we change the Þrst sample observation to
the value 30. Then using the dialog boxes shown in Displays 17.1.1, 17.1.2 and
17.1.4 produces the x̄ chart shown in Display 17.1.5. Note that the Þrst sample
mean fails the Þrst test and this is indicated on the chart by placing a 1 above
that plotted mean. If any points had failed the second test, this would have
been indicated by placing the number 2 above those plotted means, etc.

Display 17.1.4: Dialog box to choose tests to be performed in an x̄ chart.
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Display 17.1.5: An x̄ chart for a random sample of 100 from the N(5, 2) distribution
where the Þrst observation has been changed to be equal to 30.

The syntax of the corresponding session command xbarchart is

xbarchart E1 E2

where E1 is a column containing the data and E2 is either a constant, indicating
how many observations are used to deÞne a subgroup, or a column of values,
indicating how the elements of E1 are to be grouped for the calculation of the
means. Minitab then produces the center line and control limits based on the
data in E1.When E2 equals 1, σ cannot be estimated using standard deviations
and an alternative estimator is used.

There are various subcommands that can be used with xbarchart. In
particular, we can provide mu and sigma to specify the population mean and
standard deviation. For example, the commands

MTB > xbarchart c1 5;
SUBC> mu 5;
SUBC> sigma 2.

produce the chart shown in Display 17.1.3.

Using the test subcommand, various tests for control can be carried out.
For example,

MTB > xbar c1 5;
SUBC> test 1.

breaks the data into subgroups of size 5 and checks to see if any of the points
are outside the control limits. The subcommand test 2 checks to see if there
are 9 points in a row on the same side of the center line, test 3 checks to see if
there are 6 points in a row all increasing or all decreasing. There are a total of
8 tests like this, all looking for patterns. The subcommand test 1:8 performs
all 8 tests.
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17.2 Producing S Charts

Suppose we have placed a random sample of 100 from the N(5, 2) distribution
in C1 and we want an S chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I Variables Charts for S
¯
ubgroups I S

¯
... brings up the dialog box shown

in Display 17.2.1. Here we have indicated that the data is in C1 and that we
want the sample standard deviations to be based on 5 observations (so there
are 20 standard deviations). To control the placement of the LCL and UCL
limits we clicked on S Options ... to bring up the dialog box shown in Display
17.2.2. Here we set σ = 2 so that the center line and the LCL and UCL limits
are determined by this. If we don�t specify the value for σ, then this parameter
is estimated from the data.

Display 17.2.1: Dialog box to create an S chart.

Display 17.2.2: Dialog box to control center line and limits in an S chart.

Clicking on OK in both of these dialog boxes produces the S chart shown in
Display 17.2.3. As expected, all the standard deviations lie within the limits.
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Display 17.2.3: An S chart for a random sample of 100 from the N(5, 2) distribution.

We observe that the dialog box in Display 17.2.2 contains a tab labelled
Tests. As with x̄ charts (Display 17.1.4) we can select several tests to be per-
formed to assess whether or not the process is in control.
The syntax of the corresponding session command schart is

schart E1 E2

where E1 is a column containing the data and E2 is either a constant, indicating
how many observations are used to deÞne a subgroup, or a column of values,
indicating how the elements of E1 are to be grouped for the calculation of
the standard deviations. Minitab then produces the center line and control
limits based on the data in E1.When E2 equals 1, σ cannot be estimated using
standard deviations and an alternative estimator is used. There are various
subcommands that can be used with schart. For example, the commands

MTB > schart c1 5;
SUBC> sigma 2.

produces the control chart of Display 17.2.3.

17.3 Producing p Charts

A p chart is appropriate when a response is coming from a Binomial(n, p) dis-
tribution, e.g., the count of the number of defectives in a batch of size n, and we
use the proportion of defectives �p to control the process. For example, suppose
we have placed a random sample of 50 from the Binomial(10, .3) distribution
in C1 and we want a p chart of this data. Then the command S

¯
tat I C

¯
ontrol

Charts I A
¯
ttributes Charts I P

¯
... brings up the dialog box shown in Display
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17.3.1. Here we have indicated that the data is in C1 and that these counts are
based on 10 observations. To control the placement of the LCL and UCL limits
we clicked on P Chart Options ... to bring up the dialog box shown in Display
17.3.2. Here we asked that limits be determined by setting p = .3 so that the
center line is at .3, the LCL is

max
n
.3− 3

p
.3(.7)/10, 0

o
= 0.0

and the UCL is
.3 + 3

p
.3(.7)/10 = 0.73474.

If we don�t specify the value for p then this parameter is estimated from the
data and the center line and limits depend on the data.

Display 17.3.1: Dialog box to create a p chart.

Display 17.3.2: Dialog box to control center line and limits in a p chart.
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Clicking on OK in these dialog boxes produces the p chart shown in Display
17.3.3. We see from this that the process seems to be in control as we might
expect.
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Display 17.3.3: A p chart for a random sample of 50 from the Binomial(10, .3)
distribution.

The syntax of the corresponding session command pchart is

pchart E1 E2

where E1 is a column containing the data and E2 is a constant, indicating how
many observations the counts are based on. Minitab then produces the center
line and control limits based on the data in E1. There are various subcommands
that can be used with pchart. For example, the commands

MTB > pchart C1 10;
SUBC> P .3.

produces the plot shown in Display 17.3.3.

17.4 Exercises

When the data for an exercise come from an exercise in IPS, the IPS exercise
number is given in parentheses ( ). All computations in these exercises are to
be carried out using Minitab and the exercises are designed to ensure that you
have a reasonable understanding of the Minitab material in this chapter. More
generally you should be using Minitab to do all the computations and plotting
required for the problems in IPS.

1. Generate a sample of 100 from a Student(1). Make an x̄ chart for this
data based on subgroups of size 5 with µ = 0 and σ = 1. What tests for
control are failed?
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2. For the data in Exercise 1, make an x̄ chart based on subgroups of size 5
using estimates of µ and σ. What tests for control are failed?

3. For the data in Exercise 1, make an S chart based on subgroups of size 5
using σ = 1. What tests for control are failed?

4. For the data in Exercise 1, make an S chart based on subgroups of size 5
using an estimate of σ. What tests for control are failed?

5. Generate a sample of 100 from a Binomial(15, .1) distribution. Make a p
chart for this data. What tests for control are failed?

6. Generate a sample of 50 from a Binomial(15, .1) distribution followed by
a sample of 50 from a Binomial(15, .8) distribution. Make a p chart for
this data. What tests for control are failed?
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Projects

The basic structural component of Minitab is the worksheet. When working
on a project, it may make sense to have your data in several worksheets so
that similar variables are grouped together. Also, you may wish to save plots
associated with the worksheets so that everything can be obtained via a sin-
gle reference. Worksheets and graphs can be grouped together into projects.
Projects are given names and are stored in a Þle with the supplied name and
the Þle extension .mpj.
To open a new project use F

¯
ile I N

¯
ew and choose Minitab Project and click

OK. If you want to open a previously saved project, use F
¯
ile I O

¯
pen Project

and choose the relevant project from the list. To save a project use F
¯
ile I S

¯
ave

Project if the project already has a name (or you wish to use the default of
minitab) or F

¯
ile I Save Project A

¯
s if you wish to give the project a name. Not

only are the contents of all worksheets and graphs saved, but the contents of the
History folder in the Project window are saved as well and are available when the
project is reopened. You can also supply a description of the project using F

¯
ile

I Pr
¯
oject Description and Þlling in the dialog box. Note that a description of

a worksheet can also be saved using Ed
¯
itor IWork

¯
sheet I Description. When

you attempt to open a new project or exit Minitab, you will be asked if you
wish to save the contents of the current project.
Now suppose that in the project evans we have a single worksheet containing

100 numeric values in each of C1 and C2 and have produced a scatterplot of C2
against C1. We open a new worksheet using F

¯
ile I N

¯
ew and choose Minitab

Worksheet and click OK. There are now two worksheets associated with the
project called Worksheet1 and Worksheet2. Suppose that we also place 100
numeric values in C1 and C2 in Worksheet 2 and again plot C2 against C1.
We then have two plots associated with the project evans called Worksheet 1:
Plot C2*C1 and Worksheet 2: Plot C2*C1. These will all appear as individual
windows on your screen, perhaps with some hidden, and any one in particular
can be made active by clicking in that window or by clicking on the relevant
entry in the list obtained when you use W

¯
indow. You can also save individual

worksheets in the project to Þles outside the project when a particular worksheet
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is active using F
¯
ile I Save

¯
Current Worksheet As. Similarly, when a graph

window is active a graph in the project can be saved to a Þle outside the project
using F

¯
ile I Sav

¯
e Graph As.

With multiple worksheets in a project, it is easy to move data between
worksheets using cut, copy, and paste operations. For example, suppose that
we want to copy C1 and C2 of Worksheet 1 into C3 and C4 of Worksheet 2.
With Worksheet 1 active, highlight the entries in C1 and C2, use E

¯
dit I C

¯
opy

Cells, make Worksheet 2 active, click in the Þrst cell of C3, and use E
¯
dit I

P
¯
aste Cells.
It is possible to see what a project contains without opening it. To do

this use F
¯
ile I O

¯
pen Project, click on the project to be previewed and click

on the Preview button. Similarly, worksheets can be previewed using F
¯
ile I

O
¯
pen Worksheet, clicking on the worksheet to be previewed and clicking on the

Preview button.
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Functions in Minitab

B.1 Mathematical Functions

Here is a list and description of the mathematical and statistical functions
available in Minitab. All of these functions operate on each element of a column
and return a column of the same length. Let (x1, . . . , xn) denote a column of
length n. These functions can be applied only to numerical variables.

absolute - Computes the absolute value, (|x1| , . . . , |xn|) .
antilog - Computes the inverse of the base 10 logarithm, (10x1 , . . . , 10xn) .
acos - Computes the inverse cosine function, (arccos (x1) , . . . , arccos (xn)) .
asin - Computes the inverse sine function, (arcsin (x1) , . . . , arcsin (xn)) .
atan - Computes the inverse tangent function, (arctan (x1) , . . . , arctan (xn)) .
cos - Computes the cosine function when angle is given in radians,
(cos (x1) , . . . , cos (xn)) .

ceiling - Computes the smallest integer bigger than a number,
(dx1e , . . . , dxne) .

degrees - Computes the degree measurement of an angle given in radians.
exponentiate - Computes the exponential function, (ex1 , . . . exn) .
ßoor - Computes the greatest integer smaller than a number,
(bx1c , . . . , bxnc).

gamma - Computes the gamma function, (Γ (x1) , . . . ,Γ (xn)) ; note that for
nonnegative integer x, Γ (x+ 1) = x!.

lag - Computes the column (∗, x1, . . . , xn−1) .
log-gamma - Computes the log-gamma function, (lnΓ (x1) , . . . , lnΓ (xn)) ; note
that for nonnegative integer x, lnΓ (x+ 1) =

Px
i=1 ln (i).

loge - Computes the natural logarithm function, (ln (x1) , . . . , ln (xn)) .
logten - Computes the base 10 logarithm function, (log10 (x1) , . . . , log10 (xn)) .
nscore - Computes the normal scores function; see help.
parsums - Computes the column of partial sums,
(x1, x1 + x2, . . . , x1 + · · ·xn) .
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parproducts - Computes the column of partial products,
(x1, x1x2, . . . , x1 · · · · · xn) .

radians - Computes the radian measurement of an angle given in degrees.
rank - Computes the ranks of the column entries, (r1, . . . rn) .
round - Computes the nearest integer function i(x) with rounding up at .5,
(i(x1), . . . , i(xn)) ; see help for more details on this function.

signs - Computes the sign function

s(x) =

 −1 if x < 0
0 if x = 0
1 if x > 0

(s(x1), . . . , s(xn)) .
sin - Computes the sine function when the angle is given in radians,
(sin (x1) , . . . , sin (xn)) .

sort - Computes the column consisting of the sorted (ascending) column entries,¡
x(1), . . . , x(n)

¢
.

sqrt - Computes the square root function,
¡√
x1, . . . ,

√
xn
¢
.

tan - Computes the tangent function when the angle is given in radians,
(tan (x1) , . . . , tan (xn)) .

B.2 Column Statistics

Let (x1, . . . , xn) denote a column of length n. Output is written on the screen
or in the Session window and can be assigned to a constant. The general syntax
for column statistic commands is

column statistic name(E1)

where the operation is carried out on the entries in column E1 and output is
written to the screen unless it is assigned to a constant using the let command.

max - Computes the maximum of a column, x(n).
mean - Computes the mean of a column, x̄ = (x1 + · · ·xn) /n.
median - Computes the median of a column (see Chapter 1).
min - Computes the minimum of a column, x(1).
n - Computes the number of nonmissing values in the column.
nmiss - Computes the number of missing values in the column.
range - Computes the difference between the smallest and largest value in a
column,
x(n) − x(1).

ssq - Computes the sum of squares of a column, x21 + · · ·+ x2n.
stdev - Computes the standard deviation of a column,

s =

r
1

n− 1
h
(x1 − x̄)2 + · · ·+ (xn − x̄)2

i
.

sum - Computes the sum of the column entries, x1 + · · ·xn.
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B.3 Row Statistics

Let (x1, . . . , xn) denote a row of length n. The general syntax is

row statistic name E1 . . .Em Em+1

where the operations are carried out on the rows in columns E1, . . ., Em and the
output is placed in column Em+1.

rmax - Computes the maximum of a row, x(n).
rmean - Computes the mean of a row, x̄ = (x1 + · · ·xn) /n.
rmiss - Computes the number of missing values in the row.
rn - Computes the number of nonmissing values in the row.
rrange - Computes the difference between the smallest and largest value in a
row,
x(n) − x(1).

rssq - Computes the sum of squares of a row, x21 + · · ·+ x2n.
rstdev - Computes the standard deviation of a row,

s =

r
1

n− 1
h
(x1 − x̄)2 + · · ·+ (xn − x̄)2

i
.

rsum - Computes the sum of the row entries, x1 + · · ·xn.
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More Minitab Commands

In this section, we discuss some commands that can be very helpful in certain
applications. We will make reference to these commands at appropriate places
throughout the manual. It is probably best to wait to read these descriptions
until such a context arises.

C.1 Coding

The Da
¯
ta I Co

¯
de command (M

¯
anip I Co

¯
de in Version 13) is used to recode

columns. By this we mean that data entries in columns are replaced by new
values according to a coding scheme that we must specify. You can recode
numeric into numeric, numeric into text, text into numeric, or text into text
by choosing an appropriate subcommand. For example, suppose in the marks
worksheet (Display I.4) we want to recode the grades in C2, C3, and C4 so
that any mark in the range 0�39 becomes an F, every mark in the range 40�49
becomes an E, every mark in the range 50�59 becomes a D, every mark in the
range 60�69 becomes a C, every mark in the range 70�79 becomes a B, every
mark in the range 80�100 becomes an A, and the results are placed in columns
C6, C7, and C8, respectively. Then the command Da

¯
ta I Co

¯
de I Nu

¯
meric

to Text brings up the dialog box shown in Display C.1.1. The ranges for the
numeric values to be recoded to a common text value are typed in the Original
values box, and the new values are typed in the New box. Note that we have
used a shorthand for describing a range of data values. Because the sixth entry
of C4 is *, i.e., it is missing, this value is simply recoded as a blank. You can
also recode missing values by including * in one of the Original values boxes. If
a value in a column is not covered by one of the values in the Original values
boxes, then it is simply left the same in the new column.
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Display C.1.1: Dialog box for recoding numeric values to text values.

Note that this menu command restricts the number of new code values to 8.
The session command code allows up to 50 new codes. For example, suppose
in the marks worksheet we want to recode the grades in C2, C3, and C4 so that
any mark in the range 0�9 becomes a 0, every mark in the range 10�19 becomes
10, etc., and the results are placed in columns C6, C7, and C8. The following
command

MTB >code(0:9) to 0 (10:19) to 10 (20:29) to 20 (30:39) to 30 &
CONT>(40:49) to 40 (50:59) to 50 (60:69) to 60 (70:79) to 70 &
CONT>(80:89) to 80 (90:99) to 90 for C2-C4 put in C6-C8

accomplishes this. Note the use of the continuation symbol &, as this is a long
command. The general syntax for the code command is

code (V1) to code1 ... (Vn) to coden for E1 ... Em put in Em+1 ... E2m

where Vi denotes a set of possible values and ranges for the values in columns
E1 ... Em that are all coded as the number codei, and the results of this coding
are placed in the columns Em+1 ... E2m, i.e., the recoded E1 is placed in Em+1,
etc.

C.2 Concatenating Columns

The Da
¯
ta I Con

¯
catenate command (M

¯
anip I Con

¯
catenate in Version 13) com-

bines two or more text columns into a single text column. For example, if C6
contains m, m, m, f, f, reading Þrst to last entry, and C7 contains to, ta, ti, to,
ta, then the entries in the Da

¯
ta I Con

¯
catenate dialog box shown in Display

C.2.1 result in a new text column C8 containing the entries mto, mta, mti, fto,
fta.
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Display C.2.1: Dialog box for concatenating text columns.

In the session environment, the concatenate command is available for this
operation. The general syntax of the concatenate command is

concatenate E1 ... Em in Em+1

where E1, ..., Em, are text columns, and Em+1 is the target text column.

C.3 Converting Data Types

The Da
¯
ta I Co

¯
de I Us

¯
e Conversion Table command (M

¯
anip I Co

¯
de I Us

¯
e

Conversion Table in Version 13) is used to change text data into numeric data
and vice versa. As dealing with text data is a bit more difficult in Minitab, we
recommend either converting text data to numeric before input or using this
command after input to do this.

For example, in the worksheet marks (Display I.4) suppose we want to change
the gender variable from text, with male and female denoted by m and f, respec-
tively, to a numerical variable with male denoted by 0 and female by 1. To do
this, we must Þrst set up a conversion table. The conversion table comprises two
columns in the worksheet, where one column is text and contains the text values
used in the text column, and the second column is numeric and contains the
numerical values that you want these changed into. For example, suppose we
have entered columns C6 and C7 in the marks worksheet, as shown in Display
C.3.1. The Da

¯
ta I Co

¯
de I Us

¯
e Conversion Table command produces the dialog

box shown in Display C.3.2, where we have indicated that we want to convert
the text column C5 into a numeric column and that each m should become a 0
and each f should become a 1.



222 Appendix C

Display C.3.1: Columns C6 and C7 in the marks worksheet as a conversion table.

Display C.3.2: Dialog box for converting text column C5 of the marks worksheet into

a numeric column with the conversion table given in columns C6 and C7.

The general syntax for the corresponding session command convert is

convert E1 E2 E3 E4

where E1, E2 are the columns containing the conversion table, E3 is the column
to be converted, and E4 is the column containing the converted column.

C.4 History

Minitab keeps a record of the commands you have used and the data you have
input in a session. This information can be obtained in the History folder of the
Project Manager window. The commands can be copied from wherever they are
listed and pasted into the Session window to be reexecuted, so that a number
of commands can be executed at once without retyping. These commands can
be edited before being executed again. This is very helpful when you have
implemented a long sequence of commands and realize that you made an error
early on. Note that even if you use the menu commands, a record is kept only
of the corresponding session commands.
The journal command is available in the Session window if you want to

keep a record of the commands in an external Þle. For example,
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MTB >journal �comm1�
Collecting keyboard input(commands and data)in file:

comm1.MTJ
MTB >read c1 c2 c3
DATA>1 2 3
DATA>end
1 rows read.
MTB >nojournal

puts

read c1 c2 c3
1 2 3
end
nojournal

into the Þle comm1.mtj. The history is turned off as soon as the nojournal
command is typed.

C.5 Stacking and Unstacking Columns

The Da
¯
ta I St

¯
ack command (M

¯
anip I St

¯
ack in Version 13) is used to literally

stack columns one on top of the other. For example, in the marks worksheet
(Display I.4) the Da

¯
ta I St

¯
ack I S

¯
tack Columns command brings up the dialog

box shown in Display C.5.1, which has been Þlled in to stack columns C2, C3,
and C4 into C6 with the values in C2 Þrst, followed by the values in C3 and
then the values in C4. In C7, we have stored an index which indicates that
column each value in C6 came from with a 1 every time a value came from C2,
a 2 every time a value came from C3, and a 3 every time a value came from C4.
It is not necessary to create such an index.

Display C.5.1: Dialog box for stacking columns.
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In the Session window, this same result can be obtained using the stack
command. The general syntax for the stack command is given by

stack E1E2 . . .Em into Em+1

where E1, E2, ..., Em denote the columns or constants to be stacked one on top
of the other, starting with E1, and with the result placed in column Em+1. If we
want to keep an index of where the values came from, then use the subcommand

subscripts Em+2

which results in index values being stored in column Em+2.
To unstack values in a column by the values in an index column we use the

Da
¯
ta I U

¯
nstack command (M

¯
anip I U

¯
nstack in Version 13). For example,

given the columns C6 and C7 of the marks worksheet as described above, the
dialog box shown in Display C.5.2 unstacks C6 into three columns by the values
in C7. The three columns are C8, C9, and C10. Note that they are identical
to columns C2, C3, and C4, respectively. We must always specify a column
containing the subscripts when unstacking a column.

Display C.5.2: Dialog box for unstacking columns.

The general syntax for the corresponding session command unstack is

unstack E1 into E2 . . .Em;
subscripts Em+1.

where E1 is the column to be unstacked, E2, ..., Em are the columns and con-
stants to contain the unstacked column, and Em+1 gives the subscripts 1, 2, ...
that indicate how E1 is to be unstacked.
Note that it is also possible to simultaneously unstack blocks of columns.

We refer the reader to help or H
¯
elp for information on this.
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Programming in Minitab

We can store Minitab commands in Þles that can be called on to execute these
commands without having to type them. Also, we can program Minitab to carry
out iterative calculations. These aspects involve us in a discussion of macros
in Minitab. We present a very brief overview of this topic and refer the reader
to the online manual for a more extensive discussion. There are two types of
macros, global and local.
Note that because it is possible to write a macro that will loop endlessly,

it is important to know how to stop the execution if you feel it is running too
long. To do this, simultaneously press the Control and Break keys.
If the macro processor in Minitab Þnds an error in a macro, this is indicated

in the Session window by **ERROR**. If there is an error in a Minitab command
in the macro, this is indicated by *ERROR*. Minitab also provides a message
that attempts to diagnose what has caused the problem.

D.1 Global Macros

A global macro is a set of commands in a Þle with the structure

gmacro
template
body
endmacro

where template is a name for the macro, consisting of any characters but starting
with a letter, and body is a set of Minitab commands, macro statements, or other
macro names. In general, it is good form to use the Þle name for template, but
this is not necessary. If the Þle has the extension .mac, then only the Þle name,
immediately preceded by %, needs to be used to invoke it. Otherwise, the full
Þle name must be used immediately preceded by %. Also, the full path name
must be used unless the Þle is in the Macros subfolder of the default Minitab
folder (where the program is stored). The statements gmacro and endmacro
must always start and end the Þle, respectively.
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Suppose that we have placed the following statements

gmacro
generate
note This macro generates 50 samples of size 20 from the

Uniform[0,1] distribution
do k1=1:50
random 20 c1;
uniform 0 1.
let c2(k1)=mean(c1)
enddo
histogram c2
endmacro

in a Þle called generate.txt that is in the Macros subfolder of the Minitab
folder. The macro is then invoked via the Minitab command

MTB > %generate.txt

and causes 50 samples of size 20 to be generated from the uniform distribution
on the interval (0, 1), with each sample stored in C1 overwriting the preceding
one, and causes the sample mean to be computed for each of these and to be
stored in the corresponding element of C2. Finally, a histogram is produced of
these 50 means.
Clearly, this is a much more powerful method for carrying out simulations

than the one we discussed earlier, as that was in essence limited by the size
of the worksheet. Note the use of the do, enddo statements to perform the
calculations iteratively.
The note command is used to display the text on the same line, in the

Session window. The note command can also be used to place comments in the
code that explain how a program works. Otherwise, there is nothing printed in
the Session window beyond the output from any commands that print to this
window. If you want the code to be printed in the Session window, place an
echo command before the code you want printed and a noecho command when
you want to turn this off.
Macros can be nested; i.e., a macro may have in its body a statement of the

form %file where file contains a macro.

D.2 Control Statements

There are a number of statements that allow for control over the order of exe-
cution of Minitab commands in a macro.

IF, ELSEIF, ELSE, ENDIF

The if, elseif, else, endif command appears in the following structure

if expression1
block1
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elseif expression2
block2
else
block3
endif

where expression1 and expression2 are logical expressions and block1, block2,
and block3 are blocks of Minitab code. If expression1 is true, block1 is executed,
if expression1 is false and expression2 is true, block2 is executed; and if both
expression1 and expression2 are false, block3 is executed. Note that if one of
the expressions is a column of logical values, the expression evaluates as false if
all entries are false and as true otherwise. There can be up to 50 elseif state-
ments between if and endif. A logical expression is any expression involving
comparison and logical operators that evaluates to true (1) or false (0).
For example, the code

gmacro
uniform
random 100 c1;
uniform -1 1.
let k1=mean(c1)
if k1<=-.5
let k2=0
elseif k1>-.5 and k1<=0
let k2=1
elseif k1>0 and k1<=.5
let k2=2
else
let k2=3
endif
print k2
endmacro

generates a sample of 100 from the uniform distribution on the interval (−1, 1),
computes the mean, and outputs 0 if the mean is in (−1,−.5], outputs 1 if the
mean is in (−.5, 0], outputs 2 if the mean is in (0, .5], and outputs 3 if it is in
(.5, 1).

DO, ENDDO

We saw an example of do, enddo in Section D.1. These statements appear in
the following structure

do Ki = list
block
enddo

where list is a list of numbers, perhaps a patterned list such as −8 : 8/2, or
stored constants. The Minitab code in block is executed for each value in the
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list with the constant Ki taking on that value. The numbers in the list can be
in increasing or decreasing order.

WHILE, ENDWHILE

The while, endwhile statements appear in the following structure

while expression
block
endwhile

where expression is a logical expression and the code in block is executed as
long as expression is true. For example, the code

gmacro
stuff
random 2 c1;
uniform 0 1.
let k2=1
let k1=c1(k2)
while k1<.5
let k2=k2+1
if k2<=2
let k1=c1(k2)
else
break
endif
endwhile
print k2
endmacro

generates a sample of 2 from the Uniform[0, 1], Þnds the Þrst value in the sample
greater than or equal to .5, prints its location in the sample, and prints 3 if no
such value is found. Note that the break statement transfers control to the
Þrst statement following the end of the while-loop (this statement also works
this way with do-loop).

NEXT

The next command can appear in a do, enddo orwhile, endwhile and passes
control to the Þrst statement after the do or while, whichever is relevant, and
the loop variable is set to the next value in the list.

BREAK

The break command can appear in a do, enddo or while, endwhile and
passes control to the Þrst statement after the enddo or endwhile, whichever
is relevant.
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GOTO, MLABEL

The goto command allows the macro to skip over a number of statements in
the Þle. This takes the following form

goto V
...

mlabel V

where the goto V statement passes control to the statement following mlabel V
and V is a number.

CALL, RETURN

Macros can be invoked from within macros by using statements of the form
%file. This requires that the macros are in different Þles. In fact, the macros
can be in the same Þle, all having their own gmacro and endmacro statements
and templates. When the Þle is invoked, the Þrst macro is processed. If the Þrst
macro needs to refer to the other macros in the Þle, this is done via the call
and return commands. For example, suppose that a Þle contains two macros
and the Þrst macro needs to use the second one. This is implemented via the
structure

gmacro

template1
body1
endmacro

gmacro

template2
body2
endmacro

where somewhere in body1 there is the statement

call template2

which transfers control from the Þrst macro to the second macro and somewhere
in body2 there is the statement

return

which returns control to the Þrst macro.

EXIT

The exit command stops the macro. A typical use would be as part of an
if, elseif, else, endif, where if a certain condition was satisÞed no further
statements in the macro are executed.
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PAUSE, RESUME

The pause command returns control to the Session window and session com-
mands can then be invoked. Control is returned to the macro after a resume
command is issued in the Session window.

D.3 Startup Macro

You can place commands that you want to be executed every time you start
Minitab in a Þle called startup.mac in the Macro subfolder of default Minitab
directory. For example, you can use the print command in such a Þle to send
yourself reminders or the outÞle command if you always want to record your
work in a particular Þle.

D.4 Interactive Macros

A macro can write data to the Session window and accept input from the user.
We have already discussed the note command, which allows you to write com-
ments to the Session window. The write command can be used to write the
contents of columns and constants to the Session window. For example, the
code

gmacro
stuff
random 10 c1;
uniform 0 1.
write c1;
file �terminal�.
endmacro

generates a sample of 100 from the Uniform[0,1] distribution into C1 and then
writes this on the Session window. Of course, we also could have accomplished
this using the print command but recall thatwrite allows for formatted output.
Input can be provided to a macro from the keyboard while the macro is

running. This is carried out using the special Þle name terminal with the
read, set, or insert commands. For example, the code

gmacro
stuff
echo
note Read 10 observations into C1.
set c1;
file �terminal�.
print c1
endmacro

allows us to enter data into C1 (stopping when we type end), and then prints
C1 in the Session window. Note the use of the subcommand Þle for the set
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command. You can also use the read, set, and insert commands in a macro
with an end statement provided you place the data in the Þle as well. Also,
data can be read in from an external Þle but the name of the external Þle must
be on the same line as the Þle subcommand and not on the same line as the
command as in the session command and, of course, enclosed in single quotes.
The yesno command allows you to decide which commands you would like

executed perhaps based on what the exec has already computed. For example,
the code

gmacro
stuff
note : Would you like to execute the macro random.txt?
yesno k1
if k1=1
%random.txt
endif
endmacro

asks whether or not you wish to execute the macro in random.txt. If you answer
y, K1 is given the value 1 and the macro random.txt is executed; if you answer
n, K1 is given the value 0 and the macro random.txt is not executed.

D.5 Local Macros

Local macros are more sophisticated than global macros. Basically, all the
features we have discussed for global macros can also be used in local macros.
The major difference is that global macros operate only on the worksheet while
local macros create temporary local worksheets, which are used for computations
without disturbing the global worksheet. The contents of local worksheets are
not seen in the Session window. Also, local macros can have arguments and
subcommands. It is through arguments, such as columns, constants, etc., which
are passed to and passed out of the macro, that a local macro operates on
the global worksheet. Subcommands to a local macro modify the behavior of
the macro. Perhaps local macros are most useful when you want to create a
truly new command in Minitab that behaves like the other commands we have
been discussing throughout this manual. Because of their considerably more
sophisticated nature, we do not discuss local macros any further here.
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Matrix Algebra in Minitab

Some versions of Minitab also have the facility for carrying out matrix algebra.
This is useful sometimes as matrices can simplify some complicated algebra and
numerical work. In particular, the computations associated with Þtting the
regression models can be easily handled using matrix algebra. In this section,
we assume that you have been introduced to the basic operations and concepts
of matrix algebra.
As an example, consider Þtting a quadratic polynomial β1+β2x+β3x

2 to n
data points (x1, y1), . . . , (xn, yn). To do this, we must Þrst create the matrices

X =

 1 x1 x21
...

...
...

1 xn x2n


and

y =

 y1
...
yn

 .
The matrix X is called the design matrix. In a more advanced statistics course,
it is shown that best Þtting quadratic (least-squares quadratic) is given by b1+
b2x+ b3x2, where

b =

 b1
b2
b3

 = (X0X)−1X0y,

the vector of predicted values is given by

�y = Xb,

the residuals are given by

r = y − �y,

233
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and

s2 =
(y − �y)0 (y − �y)

n− 3
is the estimate of σ2.
For the general linear model E[y] = β1x1+β2x2+· · ·+βkxk, where x1, . . . , xk

are the explanatory variables and we observe the data (yi, x1i, . . . , xki) for i =
1, . . . , n, we present the data in matrix form as

X =

 x11 · · · x1k
...

...
...

xn1 · · · xnk



y =

 y1
...
yn

 .
The best-Þtting linear model is b1x1 + b2x2 + · · ·+ bkxk, where

b = (X0X)−1X0y,

�y = Xb,

r = y − �y,
and

s2 =
(y − �y)0 (y − �y)

n− k .

Notice that these formulas are the same for every linear model. Many other
useful quantities associated with the linear model can be deÞned in terms of
matrices.

E.1 Creating Matrices

In this section, we illustrate some commands for creating and operating on
matrices. We describe the session commands and note the corresponding menu
commands.
Matrices in Minitab are denoted by M1, M2, ...., M100. Note that there can

be at most 100 matrices. The name command can be used to give alternative
names to matrices. For example, the command

MTB > name m1 �design�

assigns the name design to the matrix M1, and it can be referred to as such
afterward with the name in single quotes.
If we are going to use matrices, the Þrst step is to create them. This can

be done in a number of ways. For example, we can use the C
¯
alc I M

¯
atrices I
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R
¯
ead command. For example suppose we want to create the 5× 3 matrix given
by

X =


1 1 1
1 2 4
1 3 9
1 4 16
1 5 25

 .
The C

¯
alc I M

¯
atrices I R

¯
ead command brings up the dialog box shown in

Display E.1.1. Here we have indicated that the number of rows is 5 and the
number of columns is 3, the matrix is called M1 and we are going to input the
entries from the keyboard. When we click on OK the corresponding session
command appears in Session window and we can begin to input the matrix.

Display E.1.1: Dialog box for creating a matrix.

The corresponding session command is to use the read command as in

MTB > read 5 3 m1
DATA> 1 1 1
DATA> 1 2 4
DATA> 1 3 9
DATA> 1 4 16
DATA> 1 5 25
5 rows read.
MTB > print m1
Matrix m1
1 1 1
1 2 4
1 3 9
1 4 16
1 5 25



236 Appendix E

which creates the 5 × 3 matrix M1 equal to X as displayed above. Note that
the dimensions of the matrix accompany the read command with the number
of rows followed by the number of columns and no end statement is required.
Matrices can also be directly read in from a Þle using C

¯
alc I M

¯
atrices I R

¯
ead

by clicking on read from Þle in the dialog box of Display E.1.1.
Sometimes, you want a matrix with constant entries. The C

¯
alc I M

¯
atrices

I Def
¯
ine Constant command is available for this. For example, this command

brings up the dialog box in Display E.1.2 and we use this to create a 3×3 matrix
with a 1 in each entry.

Display E.1.2: Dialog box to create a matrix with constant entries.

The session command to create a matrix of constants is the deÞne command.
The general syntax of this command is

deÞne V D1 D2 E1

which creates a matrix E1 with D1 rows, D2 columns and every entry is the
number V.
Often, you want to create a matrix with given entries along its diagonal

and 0�s in all the off-diagonal elements. Suppose we want the n entries in the
column C1 to appear in an n× n diagonal matrix. Then the C

¯
alc I M

¯
atrices

I D
¯
iagonal command with the dialog box Þlled in as in Display E.1.3 creates

such a matrix M3.
The session command to create a diagonal matrix is the diagonal command.

The command

diagonal E1 E2

creates a square matrix E2 with column E1 in the diagonal and all other entries
0. The matrix E2 is square with dimension equal to the length of E1. If instead
E1 is a matrix and E2 is a column, the diagonal of E1 is placed into the column
E2.
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E.1.3: Dialog box for creating a diagonal matrix.

It is often convenient to copy the content of columns in a worksheet directly
into a matrix and vice versa. For this we can use the Da

¯
ta I C

¯
opy I Colu

¯
mns

to Matrix command. For example, the dialog box in Display E.1.4 creates a
matrix containing the elements of columns C1, C2, C3, and C4. Note that
the columns have to be of the same length. We can also copy the columns of
a matrix into the columns of a worksheet using the Da

¯
ta I C

¯
opy I Mat

¯
rix

to Columns command. For large patterned matrices, this is probably the best
way to create the matrix. Also, if the matrix is in an external Þle we can read
the matrix into a set of columns and then use the Da

¯
ta I C

¯
opy I Mat

¯
rix to

Columns command to create the matrix.

Display E.1.4: Dialog box for creating a matrix from columns in a worksheet.

We can also use the session command copy to copy columns in a worksheet
to a matrix. For example, the commands
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MTB > set c1
DATA> 5(1)
DATA> end
MTB > set c2
DATA> 1:5
DATA> end
MTB > let c3=c2*c2
MTB > copy c1 c2 c3 m1

create the matrix M1, equal to X. If M1 is as above the command

MTB > copy m1 c1-c3

copies the Þrst column of M1 into C1, the second column of M1 into C2, etc.
Also, we can create copies of matrices using the copy command. For example,

MTB > copy m1 m2

creates a matrix M2 with the same entries as M1.
To delete matrices, use the erase command. For example,

MTB > erase m1

deletes the matrix M1.

E.2 Commands for Matrix Operations

There are a variety of commands for performing calculations with matrices.

Adding, Subtracting, and Multiplying Matrices

The command C
¯
alc IM

¯
atrices IA

¯
rithmetic brings up the dialog box in Display

E.2.1. We have Þlled this in so that we add the matrices M1 and M2 and place
the result in matrix M3. We can use this command to subtract matrices and
to multiply matrices. Note that dimensions must be appropriate to carry out
these operations.

Display E.2.1: Dialog box for carrying out matrix arithmetic.
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The corresponding session commands are given by

add E1 E2 E3

which puts E1+ E2 into E3 where E1, E2, E3, are matrices of the same dimen-
sion,

subtract E1 E2 E3
which puts E1− E2 into E3, where E1, E2, E3 are matrices of the same dimen-
sion, and

multiply E1 E2 E3

which puts E1E2 into E3, where E1 is a constant and E2, E3 are matrices of
the same dimension or E1 is a matrix with the same number of columns as the
number of rows in matrix E2.

Inverting Matrices

The command C
¯
alc I M

¯
atrices I I

¯
nvert brings up the dialog box in Display

E.2.2. We have Þlled this in so that we invert the matrix M1 and place the
result in M4.

Display E.2.2: Dialog box for inverting a matrix.

The corresponding session command is given by

invert E1 E2

which puts (E1)
−1 into E2.

Eigenvalues

The command C
¯
alc I M

¯
atrices I E

¯
igen Analysis brings up the dialog box in

Display E.2.3. We have Þlled this in so that we place the eigenvalues of the
matrix M1 in C1 and the corresponding eigenvectors in the matrix M2.
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Display E.2.3: Dialog box for an eigen analysis of a matrix.

The corresponding session command is given by

eigen E1 E2 E3

which puts the eigenvalues of symmetric matrix E1 into column E2 and the
eigenvectors into matrix E3.

Transposing Matrices

The command C
¯
alc IM

¯
atrices I T

¯
ranspose brings up the dialog box in Display

E.2.4. We have Þlled this in so that we transpose the matrix M1 and place the
result in M2.

Display E.2.4: Dialog box for transposing a matrix.
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The corresponding session command is given by

transpose E1 E2

which puts (E1)
0 into E2 for matrix E1.

Example

As an example, suppose we consider Þtting the least-squares quadratic when we
have observed the data (1, 7.2365), (2, 17.2625), (3, 33.6455), (4, 55.4614), and
(5, 82.2756). We construct the X matrix as M1 as indicated above, and the y
values are placed in the matrix M2. The session commands

MTB > transpose m1 m3
MTB > multiply m3 m1 m4
MTB > inverse m4 m4
MTB > multiply m4 m3 m5
MTB > multiply m5 m2 m6
MTB > print m6
Matrix M6

2.19780
2.10946
2.78638

compute the least-squares quadratic as 2.19780 + 2.10946x + 2.78638x2. The
session commands

MTB > multiply m1 m6 m7
MTB > subtract m2 m7 m8
MTB > transpose m8 m9
MTB > multiply m9 m8 m10
Answer = 0.1880
MTB > let k1=.1880/2
MTB > print m7 m8 k1

store the predicted values in M7, the residuals in M8, and s2 in K1.
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