PERIODIC TABLE AEROBICS!

1	IA 1 H	Periodic Table									IIIA	IVA	VA	VIA	VIIA	0 ² He		
2	³ Li	Be	of the Elements							⁵ B	°C	7 N	⁸ O	9 F	¹⁰ Ne			
3	¹¹ Na	¹² Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	Ca	²¹ Sc	22 Ti	²³ V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	30 Zn	³¹ Ga	Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	40 Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	46 Pd	47 Ag	⁴⁸ Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	57 *La	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹ +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ 110	111 111	¹¹² 112	¹¹³ 113					

* Lanthanide Series

+ Actinide Series

e	58 Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	62 Sm	Eu	Gd	65 Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	71 Lu
	90	91	92	93	94	95	⁹⁶	97	⁹⁸	99	¹⁰⁰	¹⁰¹	¹⁰²	¹⁰³
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

BINARY IONIC COMPOUNDS Binary means 2! **Properties of Ionic compounds:**

- Are <u>electrolytes:</u> conduct electricity when dissolved in water
 - This is because of the ions! Metal Cations (+) and Nonmetal Anions (-)
 - Have Electrostatic attractions:
 - From the + and ions
 - This gives them STRONG bonds called a crystal lattice
 - This makes them HARD!

Have Strong Bonds:

- Require lots of energy to break
- Causes high melting/boiling points
- Have crystal structures
 - depend on the elements being bonded
 - They must combine to form neutral compounds!
 - Ex. CaBr₂ is from the combination of
 1 Ca²⁺ cation & 2 Br⁻ anions

DRAWING IONIC COMPOUNDS:

(for each of the following ion pairs DRAW how the ionic compounds are made and then write the formula) First write the Lewis structures and then make sure they are neutral.

4.) Mg with P

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Shortcut to figure out the formula...

Example with Na₂S

1. First write down the charge (oxidation number) of each ion

Na: Na⁺

S: S²⁻

- 2. Write the two symbols side by side, with the cation first Na⁺ S²⁻
- 3. Make a neutral compound by making sure that the charges are equal.
- If the charges don't balance out then do <u>criss-cross</u> (only numbers) and reduce the numbers to simplest ratio because that is how ionic formula units arrange themselves!

Look at these examples:

- 1. Mg bonded with O
- Mg²⁺ O²⁻ Mg₂O₂ Mg: Mg^{2+}
- O^{2-} O:

F: F⁻

Recall we simplify the ratio, so it will be: MgO 2. Mg with F Mg²⁺ F⁻ MgF₂ Mg: Mg^{2+}

To create a neutral ionic compound, for every 1 Mg 2 fluoride ions are needed to bond : MgF_2

Try these:

3. Al with O

4. Sr with Cl

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar

Naming <u>Binary</u> (only 2 elements) Ionic Compounds

- 1. First write the cation, then the anion.
- 2. The cation is named after its parent element. (i.e. Na⁺ is called sodium)
- 3. For the anion take the first part of the parent element's name, drop the ending and add –ide (i.e. Cl⁻ would be chloride)

Some Examples

- 1.) KCI
- Potassium chloride
- 2.) CaBr₂
- Calcium bromide
- 3.) SrS
- strontium sulfide
- 4.) AlBr₃
- aluminum bromide

When writing the formula from the name, first write the ions (cation first, then anion) and then the formula

Example: Magnesium chloride

Write the formulas for the main group binary compounds

- 1.) aluminum oxide
- 2.) magnesium phosphide
- 3.) Calcium oxide

4.) lithium sulfide

What about metals that are not in A-Groups?? How do we know the charge??

- Many cations in the f/d blocks can have multiple charges. (ex. Fe can be Fe²⁺ or Fe³⁺)
- We differentiate the charge by using roman numerals. This is called the <u>STOCK SYSTEM</u>!
 - Fe²⁺ = iron(II)
 - Fe^{3+} = Iron(III)

TABLE 2.4 Common Cations

Charge	Formula	Name	Formula	Name
1+	H^+ Li ⁺ Na ⁺ K ⁺ Cs ⁺ Ag ⁺	Hydrogen ion Lithium ion Sodium ion Potassium ion Cesium ion Silver ion	NH4 ⁺ Cu ⁺	Ammonium ion Copper(I) or cuprous ion
2+	Mg^{2+} Ca^{2+} Sr^{2+} Ba^{2+} Zn^{2+} Cd^{2+}	Magnesium ion Calcium ion Strontium ion Barium ion Zinc ion Cadmium ion	$Co^{2+} Cu^{2+} Fe^{2+} Mn^{2+} Hg_2^{2+} Hg_2^{2+} Hg^{2+} Ni^{2+} Pb^{2+} Sn^{2+} $	Cobalt(II) or cobaltous ion Copper(II) or cupric ion Iron(II) or ferrous ion Manganese(II) or manganous ion Mercury(I) or mercurous ion Mercury(II) or mercuric ion Nickel(II) or nickelous ion Lead(II) or plumbous ion Tin(II) or stannous ion
3+	Al ³⁺	Aluminum ion	Cr ³⁺ Fe ³⁺	Chromium(III) or chromic ion Iron(III) or ferric ion

Some Examples

- 1.) *MnF₂
- Manganese (II) fluoride
- 2.) *PbS
- Lead (II) sulfide
- 3.) Cobalt(III) chloride \rightarrow Use criss-cross
- CoCl₃
- 4.) tin (IV) bromide
- SnBr₄

Ahh Transition Metals-Name to formula is pretty easy but formula to name is a bit more involved....

- To figure out the name from the formula you have to use the anion!
- Ex. $Fe_2O_3 \rightarrow iron (??)$ oxide
 - Oxygen is predictable $\rightarrow O^{-2}$
 - Iron is variable \rightarrow Fe^{+x}
 - I use an equation equal to zero

Cation Subscript(cation charge) + Anion subscript(anion charge) = 0

 $2(x) + 3(-2)=0 \rightarrow 2x=6 \rightarrow x=3$

So... Fe in this case is +3 and this is

Iron (III) oxide!

Cation Subscript(cation charge) + Anion subscript(anion charge) = 0

Let's Practice

1) CuO

2) VS₂

3) Pb₃P₂

4) MnN

Students, draw anywhere on this slide!

Pear Deck Interactive Slide Do not remove this bar Cation Subscript(cation charge) + Anion subscript(anion charge) = 0

Here are my solutions!!!

1)	CuO	

1(x) + 1(-2) = 0

Solve for x

X= +2

Copper (II) oxide

3) Pb₃P₂

3(x) + 2(-3) = 0

Solve for x

X= +2

Lead (II) phosphide

2) VS_2 1(x) + 2(-4) = 0Solve for x X = +4Vanadium (IV) sulfide 4) MnN 1(x) + 2(-3) = 0Solve for x X = +3Manganese (III) Nitride