Intermediate Value Theorem

Name:

AP Calculus

1) Let f be a twice differentiable function (which means what it sounds like it means) such that f(2) = 5 and f(5) = 2. Let h(x) = f(x) - x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.

x	0	1	2
f(x)	1	k	2

- 2) The function f is continuous on the closed interval [0, 2] and has values that are given in the table above. The equation $f(x) = \frac{1}{2}$ must have at least two solutions in the interval [0, 2] if k = 1
 - a) 0
- b) ½
- c) 1
- d) 2
- e) 3

Explain your answer:

- 3) Let f be a function that is differentiable on the open interval (1, 10). If f(2) = -5, f(5) = 5, and f(9) = -5 which of the following MUST be true:
 - I. f has at least 2 zeros.
 - II. The graph of f has at least one horizontal tangent.
 - III. For some c, 2 < c < 5, f(c) = 3.
- 4) Given the values from F(x) in the table below, can we conclude that F(x) = 3? If so, in what interval(s) would this be true? Justify your answer.

X	-1	2	4	7
F(x)	10	0	2	6