Essential Outcomes Integrated Chemistry/Physics Pacing Guide

1) Properties of Matter: Macroscopic as a Model for Microscopic- Understand how the energies and motions of atoms and molecules at the microscopic level can be used to understand and predict the macroscopic properties of matter of gases, liquids and solids.

Learning Goals:

A) ICP.3.1 Describe how we use macroscopic properties of matter to model microscopic processes.

B) ICP.5.1 Recognize and describe physical properties of matter and use these to differentiate between pure substances and mixtures.

C) ICP.3.2 Study the characteristics of solids, liquids, and gases and their changes of state and interpret them in terms of a molecular model which describes their energies and motions.

D) ICP 3.3 Understand how thermal energy (the microscopic motions of the atoms and/or molecules) is related to the macroscopic concept of temperature. Examine the differences in these concepts by measuring the temperature changes, and determining specific heat capacity, of water as it is heated or cooled.

E) ICP.3.4 Understand how the microscopic kinetic molecular theory, explains observations of macroscopic gas behavior in terms of temperature, volume, pressure, and the number of particles (using the mole concept).

2.) Chemical Energy, Reactions, and Bonding- Describe how energy is produced and absorbed in chemical reactions.

Learning Goals:

A) ICP.5.3 Understand that the atomic number is unique to each element and is the number of protons in the nucleus of the element.

B) ICP.7.2 Differentiate between protons, neutrons, and electrons and determine the number of these subatomic particles in each atom.

C) ICP 5.2 Use the periodic table to understand important patterns in properties of elements. Recognize that the pattern of properties of the elements correlates most closely with the configuration of the electrons in each element.

D) ICP.5.4 Use the concept of the mole to relate number of moles and the mass of a sample of a pure substance of known chemical composition.

E) ICP.5.5 Using conservation principles write and balance chemical equations.

F) ICP.5.6 Identify key indicators of a chemical change and classify simple types of chemical reactions. Differentiate between covalent, ionic, hydrogen and Van der Waals bonding, and write formulas for and name compounds of each type.

G) ICP.5.7 Explain that in exothermic chemical reactions chemical energy is converted into other forms such as thermal, electrical, light, and sound energy.

H) ICP.4.3 Explain that electrons can absorb energy and can release energy, and that electrons in atoms do this at specific energies.

3) Nuclear Energy (fission/fusion)- Describe how the stability of nuclei in terms of the binding energies of their constituent protons and neutrons explains the energy production processes of fission and fusion.

A) ICP.7.1 Demonstrate how historical models and experiments supported the development of our current understanding of the atom and its nucleus.

B) ICP.7.2 Differentiate between protons, neutrons, and electrons and determine the number of these subatomic particles in each atom.

C) ICP.7.3 Understand that the stability of nuclei depends on the numbers of neutrons and protons.

D) ICP.7.4 Understand that fission results from large, less stable nuclei decomposing to form smaller, more stable nuclei.

E) ICP.7.5 Understand that fusion results from two smaller nuclei combining to form one larger nucleus.

F) ICP 7.6 Understand that the energy radiated from the sun derives from the fusion process.

G) ICP.7.7 Describe the various forms of emission that are typical of radioactive decay.

H) ICP 7.8 Relate the fission process to the human development and use of the fission process in war (uncontrolled) and in peace (controlled).

4) Motion and Energy of Macroscopic Objects- Describe and explain the motion of macroscopic objects in terms of Newton's laws and use the concepts of kinetic and potential energy to describe motion.

A) ICP.1.1 Measure the motion of objects to understand the relationships between distance, velocity, and acceleration and deepen understanding through graphical analysis of the time dependence of acceleration, velocity and distance.

B) ICP.1.2 Describe and apply Newton's three laws of motion. By experimentation, determine the relationships among the variables in Newton's laws and how all three laws relate mass, acceleration and force as a triad of proportional variables, leading to the definitions of momentum and energy.

C) ICP.1.3 Describe how Newton's law of universal gravitation, together with the laws of motion, explains the motions of objects on earth and of the moon, planets and stars.

D) ICP.1.4 Describe the kinetic and potential energies of macroscopic objects, and use measurements to develop an understanding of these forms of energy.

5) Energy Transport / Heat- Describe how vibrations and waves transport energy.

A) ICP 3.3 Understand how thermal energy (the microscopic motions of the atoms and/or molecules) is related to the macroscopic concept of temperature. Examine the differences in these concepts by measuring the temperature changes, and determining specific heat capacity, of water as it is heated or cooled.

B) ICP.4.1 Using conservation of energy, calculate the thermal energy released or absorbed by an object and distinguish between exothermic and endothermic changes.

C) ICP.5.7 Explain that in exothermic chemical reactions chemical energy is converted into other forms such as thermal, electrical, light, and sound energy.

D.) ICP.4.2 Differentiate between conduction, convection, and radiation and identify them as types of energy transfer.

6) Mechanical Energy and Propagation of Energy by Waves- Explain that waves transmit energy, come in two forms, transverse and longitudinal, and occur throughout nature.

A) ICP 2.1 Identify properties of objects that vibrate, using Newton's laws to understand the motion. Understand that vibrating objects can give rise to mechanical waves.

B) ICP.2.2 Identify properties of waves including frequency, wavelength, amplitude, energy, and wave speed.

C) ICP 2.3 Describe how energy is propagated by waves without the transfer of mass using examples such as water waves, earthquakes, and sound waves.

D) ICP.2.4 Apply the properties of waves to wave phenomena including reflection, and refraction, as well as the transmission and loss of energy.

E) ICP.4.4 Describe the relationships between velocity, frequency, wavelength, and energy in electromagnetic waves. Describe the regions of the electromagnetic spectrum.

F) ICP 4.5 Understand that from diffraction we know that visible light is an electromagnetic wave.

7) Electrical Energy Propagation and Magnetism- Describe how the movement and transfer of changed particles results in the transfer of electrical energy.

A) ICP.6.1 Explain that objects that carry a net charge will exert an electric force on other objects that may be attractive or repulsive.

B) ICP.6.2 Explain that when charge is transferred from one object to another, the amount lost by one object equals the amount gained by the other, consistent with the principal of conservation of charge.

C) ICP.6.3 Using the example of electrolysis and its application in batteries, explain the relationship between chemical reactions and electrical energy.

D) ICP.6.4 Define and describe the relationships between voltage, current, resistance and power in open and closed electrical circuits.

E) ICP.6.5 Describe the differences in current flow in parallel and in series circuits.

F) ICP.6.6 Explain that some objects, called magnets, exert magnetic forces with no direct contact.

G) ICP.6.7 Using the examples of motors and generators, explain that electrical energy can be transformed into mechanical energy and vice versa.

8) Society (Energy production, environment, economics)- Understand the impact of energy production and use on society and the environment.

A) ICP.8.1 Describe how energy needs have changed throughout history and how energy needs are met in modern society.

B) ICP.8.2 Describe the benefits and risks of the development of non-renewable forms of such as coal, oil, natural gas and uranium fission sources.

C) ICP.8.3 Describe the benefits and risks of the development of renewable forms of energy such as solar energy, wind-energy, geothermal energy, fusion energy and biofuels.

D) ICP.8.4 Describe how efficient use of renewable and non-renewable energy sources is essential to maintaining an acceptable environment.

E) ICP.8.5 Describe how the availability of energy resources is essential to the development of an economically viable society.

F) ICP.8.6 Contrast the dependence on and use of energy and other natural resources in the economies of industrial nations, of developing nations and of undeveloped nations.

G) ICP.8.7 Describe the energy needs of a modern urban city, and compare and contrast these needs with those of a modern rural community.

	MICHIGAN CITY HIGH SCHOOL Integrated Chemistry and Physics					
Ongoing/All Year	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter		
Course Title	Assessment Type	Assessment Type	Assessment Type	Assessment Type		
Standard	Standard Bundle # 1 - Properties of Matter / States of Matter 3.1, 5.1, 3.2, 3.3, 3.4 - 4 weeks (Ch 2-3) Bundle # 2 - Chemical Energy, Reactions, and Bonding 5.2, 5.3, 7.2, 7.3, 5.4 - 5 weeks (Ch 4-5)	Standard Bundle #2- Chemical Energy, Reactions, and Bonding 5.5, 5.6, 5.7, 4.3 - 6 weeks (Ch 6-7) Bundle # 3 -Nuclear Energy - 2 weeks (Ch 10)	Standard Bundle # 4- Motion and Energy of Macroscopic Objects - 5 weeks (Ch 11-12) Bundle # 5- Energy Transport / Heat - 2 weeks (Ch 15-16) Bundle #6- Waves 2 weeks (Ch 17)	Standard Bundle # 6- Waves - 2 weeks (Ch 18) Bundle #7- Electrical Energy / Magnetism - 5 weeks (Ch 20-21) Bundle #8- Society -1.5 weeks (Ch 21)		
	Best Practice MethodsCooperative LearningSimilarities and DifferencesChoiceFrequent and immediate feedbackGraphic OrganizersSummarizingAnalysis and EvaluationHypothesize	Best Practice MethodsCooperative LearningSimilarities and DifferencesChoiceFrequent and immediate feedbackGraphic OrganizersSummarizingAnalysis and EvaluationHypothesize	Best Practice Methods•Cooperative Learning•Similarities and Differences•Choice•Frequent and immediate feedback•Graphic Organizers•Summarizing•Analysis and Evaluation•Hypothesize	Best Practice MethodsCooperative LearningSimilarities and DifferencesChoiceFrequent and immediate feedbackGraphic OrganizersSummarizingAnalysis and EvaluationHypothesize		

Benchmarks #1- Integrated Chemistry Physics - Macroscopic as a Model for Microscopic

Properties of Matter: Understand how the energies and motions of atoms and molecules at the microscopic level can be used to understand and predict the macroscopic properties of matter of gases, liquids and solids.

ICP.3.1 Describe how we use macroscopic properties of matter to model microscopic processes.

ICP.5.1 Recognize and describe physical properties of matter and use these to differentiate between pure substances and mixtures.

ICP.3.2 Study the characteristics of solids, liquids, and gases and their changes of state and interpret them in terms of a molecular model which describes their energies and motions.

ICP 3.3 Understand how thermal energy (the microscopic motions of the atoms and/or molecules) is related to the macroscopic concept of temperature. Examine the differences in these concepts by measuring the temperature changes, and determining specific heat capacity, of water as it is heated or cooled.

ICP.3.4 Understand how the microscopic kinetic molecular theory, explains observations of macroscopic gas behavior in terms of temperature, volume, pressure, and the number of particles (using the mole concept).

Declarative Knowledge		Procedural Knowledge	
Concepts	 The properties of matter can distinguish the types of matter / Chemical and physical properties. Solids, liquids, and gases. The gas laws. Phase changes / macroscopic concept of temperature 	Processes	Scientific Method Reading Process Students will understand steps of a problem solving method. Students will to make conversions using dimensional analysis. Students will be able to perform calculations using significant figures.
Organizing Ideas	 Students will understand and be able to explain how physical properties can be used to differentiate among substances; solutions, and heterogeneous mixtures. Students will be able to identify chemical and physical changes in matter. Students will recognize and describe that heat transfer associated with a phase change as either exothermic or endothermic. Students will understand and be able to explain how electromagnetic attractive forces within and between substances determine their physical state. Students will understand and identify solutions as homogeneous mixtures containing a solute in a solvent. The ratio of solute to solvent can be expressed 		

as concentration in a number of ways. 7. Students will understand that Antoine Lavoisier determined a quantitative method for measuring matter in demonstrating the Law of Conservation of Mass.	

Vocabulary	Phase changes	Electromagnetic	Skills	
,	Significant figures	Plasma		
	Types of solutions	Heat of vaporization		
	Solution	Vaporization		
	Mixture	Molarity		
	Heterogeneous	Types of mixtures		
	Homogeneous	Attractive forces		
	Pure substance	Precision		
	Suspension	Melting point		
	Colloid	Variable		
	Solvent	Physical and chemical changes		
	Solution	Heat of fusion		
	States of matter	Density		
	Endothermic	Manipulated		Determining density
	Sublimation	Boiling point		Read thermometers
	Exothermic			Determining heat of fusion
	Heat of fusion			Converting using dimensional
	Density			analysis
	Manipulated			Reading and making graphs
	Boiling			Designing tables/charts
	Solute			Problem Solving
	Solution concentration			 List the given
	Physical and chemical properties			 List the unknown
	Liquid			• Analyze
	Condensation			• Calculate
	Matter			Check your work
	Gas			
	Evaporation			

Benchmarks #2 - Integrated Chemistry/Physics - Chemical Energy, Reactions, and Bonding

Chemical Energy, Reactions, and Bonding- Describe how energy is produced and absorbed in chemical reactions.

- A) ICP.5.3 Understand that the atomic number is unique to each element and is the number of protons in the nucleus of the element.
- B) ICP.7.2 Differentiate between protons, neutrons, and electrons and determine the number of these subatomic particles in each atom.
- C) ICP 5.2 Use the periodic table to understand important patterns in properties of elements. Recognize that the pattern of properties of the elements correlates most closely with the configuration of the electrons in each element. ICP.5.4 Use the concept of the mole to relate number of moles and the mass of a sample of a pure substance of known chemical composition.
- D) ICP.5.5 Using conservation principles write and balance chemical equations.
- E) ICP.5.6 Identify key indicators of a chemical change and classify simple types of chemical reactions. Differentiate between covalent, ionic, hydrogen and Van der Waals bonding, and write formulas for and name compounds of each type.
- F) ICP.5.7 Explain that in exothermic chemical reactions chemical energy is converted into other forms such as thermal, electrical, light, and sound energy.
- G) ICP.4.3 Explain that electrons can absorb energy and can release energy, and that electrons in atoms do this at specific energies.

Declarative Knowledge		Procedural Know	ledge
Concepts	 Atomic particles- protons, neutrons, electrons Atomic structure The periodic table / periodic properties Chemical bonding The mole Chemical Reactions Energy changes in reactions. 	Processes	Scientific Method Problem Solving List the given List the unknown Analyze Calculate Check your work
Organizing Ideas	 Students will understand and be able to explain the subatomic particles of an atom. Students will be able to explain how the subatomic particles fit together in an atom. Students will understand that the Periodic Table is arranged by increasing atomic number. Students will be able to calculate the numbers of protons, neutrons, and electrons from the Periodic Table. Students will be able to recognize and give examples of isotopes. Students will be able to understand and predict how electrons are shared in forming covalent bonds. Students will understand, explain, and predict how ions can be formed leading to the formation of ionic bonds. Students will be able to classify types of chemical reactions. 		

 Students will be able to use balanced chemical equations to show the relationships between atoms, moles, and particles of reactants and products. 		
Details	 Subato mic particle charges Subato mic particles are protons, neutrons, and electrons Classify an element by its family and period Predict properties of elements by location on Periodic Table Mass number equals number of protons and neutrons Atomic number equals number equals number equals number equals number of 	Skills

	protons and	
	electrons	
	7. Average	
	atomic mass	
	is a	
	weighted of	
	all naturally	
	occurring	
	isotones of	
	an element	
	9 Tratana	
	0. ISOTOPE	
	s of an	
	element	
	have the	
	same	
	number of	
	protons and	
	different	
	number of	
	neutrons	
	9. Identif	
	y metals and	
	nonmetals	
	based on	
	their	
	properties	
	10. Determi	
	ne proper	
	ionic	
	charges	
	11 Charact	
	erize onions	
	and cations	
	12 Octet	
	rule	
	application	
	13 Agamb	
	IJ. ASSEIID	
	identifu	
	identity	
	compounds	

		14 Balance	
		Chamical	
		Equations	
		15 Close for	
		15. Clussify	
		Types of	
		chemical	
		reactions	
Vocabulary	Proton		
	Electron cloud		
	Orbital		
	Period		
	Metals		
	Valence electrons		
	Conductor		
	Energy		
	Neutron		
	Group/family		
	Electron configuration		
	Periodic law		
	Nonmetals		
	Noble gases		
	Conductor		
	Periodic		
	Electron		
	Halogens		
	Ground state		
	Electron dot diagram		
	Atomic theory		
	Nucleus		
	Isotope		
	Metalloid		
	Atomic number		
	Transition metals		
	Atomic mass		
	Electron		
	Octet rule		
	metals		
	Covalent bond		
	Nonmetals		
	Dot diagram		

Ions	
Polyatomic ions	
Anions	
Charge	
Cations	
Chemical formula	
Ionic bond	
Metallic bonds	
Valence electrons	
Compounds	
Subscripts	
Balanced chemical equation	
Molecules	
Combination/synthesis reaction	
Reactants	
Decomposition reaction	
Products	
Single replacement reaction	
Coefficient	
Double replacement reaction	
Yield/produces	
Combustion reaction	
Moles	

Benchmarks #3 - Integrated Chemistry/Physics - Nuclear Reactions

 A.) ICP.7.1 Demonstrate how historical models and experiments supported the development of our current understanding of the atom and its nucleus. B.) ICP.7.2 Differentiate between protons, neutrons, and electrons and determine the number of these subatomic particles in each atom. C.) ICP.7.3 Understand that the stability of nuclei depends on the numbers of neutrons and protons. D.) ICP.7.4 Understand that fission results from large, less stable nuclei decomposing to form smaller, more stable nuclei. E.) ICP.7.5 Understand that fusion results from two smaller nuclei combining to form one larger nucleus. F.) ICP 7.6 Understand that the energy radiated from the sun derives from the fusion process. G.) ICP.7.7 Describe the various forms of emission that are typical of radioactive decay. H.) ICP 7.8 Relate the fission process to the human development and use of the fission process in war (uncontrolled) and in peace (controlled). 					
Concente	1 Nuclear reactions involve changes in the nucleus of an atom and its	Processes	Problem Solving		
Concepts	 Nuclear reactions involve changes in the nucleas of an atom and its stability. Half life and radioactive decay. Fission and fusion and their applications. 	Frucesses	Writing Process Scientific Research		
Organizing Ideas	 Students will know and explain that the nucleus of a radioactive isotope is unstable and may spontaneously decay, emitting particles and/or electromagnetic substances. Students will be able to use half-lives to estimate the age of materials that contain radioactive substances. Students will differentiate between fission and fusion. Students will understand that Marie and Pierre Curie made radium available to researchers all over the world, which led to an increased study of radioactivity. 				
	Details	1. Ca Iculati ng half- lives 2. Ca Iculati ng freque ncy and	Skills		

3) Nuclear Energy (fission/fusion)- Describe how the stability of nuclei in terms of the binding energies of their constituent protons and neutrons explains the energy production processes of fission and fusion.

			wavele ngth of radiati on 3. Co mpare and contra st fission and fusion 4. Si gnifica nt figure s	
Vocabulary	Radioactive, fusion Fission Isotope Radioactive decay Decay Unstable Half-lives Radioactive substances Alpha decay Frequency Velocity Reflection Hertz Crest Median	Beta decay Gamma radiation Particles Electromagnetic radiation Radiocarbon dating Electromagnetic spectrum Wavelength Amplitude Radio waves Infrared radiation Ultraviolet radiation Gamma rays Microwaves X-rays Visible light		

Benchmarks #4 - Integrated Chemistry/Physics - Motion and Energy of Macroscopic Objects

Motion and Energy of Macroscopic Objects- Describe and explain the motion of macroscopic objects in terms of Newton's laws and use the concepts of kinetic and potential energy to describe motion.

A) ICP.1.1 Measure the motion of objects to understand the relationships between distance, velocity, and acceleration and deepen understanding through graphical analysis of the time dependence of acceleration, velocity and distance.

B) ICP.1.2 Describe and apply Newton's three laws of motion. By experimentation, determine the relationships among the variables in Newton's laws and how all three laws relate mass, acceleration and force as a triad of proportional variables, leading to the definitions of momentum and energy.

C) ICP.1.3 Describe how Newton's law of universal gravitation, together with the laws of motion, explains the motions of objects on earth and of the moon, planets and stars.

D) ICP.1.4 Describe the kinetic and potential energies of macroscopic objects, and use measurements to develop an understanding of these forms of energy.

Declarative Knowledg	e	Procedural Know	Procedural Knowledge	
Concepts	 The motion of an object can be described by its position, velocity, and acceleration. Speed, velocity, and acceleration Forces Newton's Laws of Motion Universal Gravitational Kinetic / potential energy 	Processes	Reading Process Scientific Method	
Organizing Ideas	 Students will understand and use vector analysis to describe motion and change in position using a frame of reference. Students will understand and calculate average speed is equal to total distance over time. Students will understand and calculate that acceleration is a change in velocity over time. Students will be able to describe and demonstrate Newton's Laws of Motion. Students will understand that the force of gravity proportional to the masses of the objects and the distance between them. Students will be able to compare and contrast kinetic and potential energy. 			
	Details	 Vector analysis Vector addition and subtraction Formulas for average speed 	Skills	

			and velocity 4. Plotting distance-speed graphs 5. Plotting distance-time graphs 6. Using graphs to determine average speed and average velocity 7. Calculate	
			speed and acceleration using different frames of references 8. Force 9. Friction 10. Relate	
			Newton's laws to everyday examples. 11. Law of gravitation. 12. Kinetic vs. potential energy.	
Vocabulary	Frame of reference Motion Speed Velocity Free fall Acceleration due to gravity Terminal velocity Graph slope Position Average velocity Delta symbol	Acceleration Distance Time Distance-time graph Distance-speed graph Vector, magnitude Direction Scalar Graph scale Rate Head of vector		

Change in velocity	Tail of vector	
kinetic / potential energy	Delta symbol	
Inertia		
Force		
Net force		
Normal force		
Frictional force		
Static friction		
Sliding friction		
Rolling friction		
Fluid friction		
Gravity		
Acceleration due to gravity		
Mass		
Vectors		

Benchmark #5: Int Chem/Physics- Energy Transport / Heat- Describe how vibrations and waves transport energy.

Describe how vibrations and waves transport energy.

- A) ICP 3.3 Understand how thermal energy (the microscopic motions of the atoms and/or molecules) is related to the macroscopic concept of temperature. Examine the differences in these concepts by measuring the temperature changes, and determining specific heat capacity, of water as it is heated or cooled.
- B) ICP.4.1 Using conservation of energy, calculate the thermal energy released or absorbed by an object and distinguish between exothermic and endothermic changes.
- C) ICP.5.7 Explain that in exothermic chemical reactions chemical energy is converted into other forms such as thermal, electrical, light, and sound energy.
- D) ICP.4.2 Differentiate between conduction, convection, and radiation and identify them as types of energy transfer.

Declarative Knowledge		Procedural	Knowledge
Concepts	 Law of conservation of energy. Thermal energy and matter. heat Exothermic and endothermic 	Processes	Scientific Method Writing Process Scientific Research
Organizing Ideas	 Energy exists in different forms and is conserved when converted from one form to another. Students will understand and explain that whenever the amount of energy in one place or form diminishes, the amount in other places or forms increases by the same amount. Students will understand and explain the types and transformations of energy. Students will understand the concepts of heat and thermodynamics. 		
	Details	 La w of Conser vation of Energy Th e relatio nship betwe en potenti al and 	Skills

	kinetic	
	enerav	
	3 Th	
	5. IN	
	e	
	differ	
	ence	
	betwe	
	en	
	renewa	
	ble and	
	nonnon	
	nonren	
	ewable	
	energy	
	4. Us	
	e the	
	correc	
	+	
	formul	
	as to	
	calcula	
	te	
	work,	
	power,	
	efficie	
	ncy	
	and	
	masha	
	mecha	
	nical	
	5. ad	
	vantag	
	e	
	6. Cl	
	assific	
	ation	
	of	
	aimala	
	simple	
	machin	
	es	
	7. Si	

			gnifica nt figures	
Vocabulary	Energy- mechanical, ther	mal, chemical, electrical, electromagnetic, nuclear		
	power	Work		
	Simple machines	Mechanical advantage		
	Pulley	load		
	Wedge	Kinetic Energy		
	Renewable energy	Distance		
	Fulcrum	Energy conversion		
	Lever	Efficiency		
	Nonrenewable	Input work		
	Potential energy	Output work		

Benchmark #6: Mechanical Energy and Propagation of Energy by Waves

Mechanical Energy and Propagation of Energy by Waves- Explain that waves transmit energy, come in two forms, transverse and longitudinal, and occur throughout nature.

Energy Transport- Describe how vibrations and waves transport energy.

A) ICP 2.1 Identify properties of objects that vibrate, using Newton's laws to understand the motion. Understand that vibrating objects can give rise to mechanical waves.

B) ICP.2.2 Identify properties of waves including frequency, wavelength, amplitude, energy, and wave speed.

C) ICP 2.3 Describe how energy is propagated by waves without the transfer of mass using examples such as water waves, earthquakes, and sound waves.

D) ICP.2.4 Apply the properties of waves to wave phenomena including reflection, and refraction, as well as the transmission and loss of energy.

E) ICP.4.4 Describe the relationships between velocity, frequency, wavelength, and energy in electromagnetic waves. Describe the regions of the electromagnetic spectrum.

F) ICP 4.5 Understand that from diffraction we know that visible light is an electromagnetic wave.

Declarative Knowledg	Declarative Knowledge		Knowledge
Concepts	 Students will recognize and explain that waves are described by their velocity, wavelength, frequency or period, and amplitude. Students will understand and explain that waves can superpose on one another, bend around corners, reflect off surfaces, be absorbed by materials they enter, and change direction when entering a new material. 	Processes	Scientific Method Writing Process Scientific Research
Organizing Ideas	 Students will understand and describe types and properties of mechanical waves. Students will be able to describe how electromagnetic, waves are produced, how they travel, and their functions. Students will be able to identify how energy is propagated by waves without the transfer of mass. Students will understand how sound is transmitted. 		
	Details	1. Types of mechanical waves, including their properties. 2 Re	Skills

			flection, refraction, diffraction , interferen ce. 3. W aves and sound. 4. O ptics / light	
Vocabulary	Mechanical wave period hertz wavelength interference	Periodic motion frequency amplitude reflection refraction sound optics light		

Benchmark #7: Electrical Energy Propagation and Magnetism- Describe how the movement and transfer of changed particles results in the transfer of electrical energy.

- A) ICP.6.1 Explain that objects that carry a net charge will exert an electric force on other objects that may be attractive or repulsive.
- B) ICP.6.2 Explain that when charge is transferred from one object to another, the amount lost by one object equals the amount gained by the other, consistent with the principal of conservation of charge.
- C) ICP.6.3 Using the example of electrolysis and its application in batteries, explain the relationship between chemical reactions and electrical energy.
- D) ICP.6.4 Define and describe the relationships between voltage, current, resistance and power in open and closed electrical circuits.
- E) ICP.6.5 Describe the differences in current flow in parallel and in series circuits.
- F) ICP.6.6 Explain that some objects, called magnets, exert magnetic forces with no direct contact.
- G) ICP.6.7 Using the examples of motors and generators, explain that electrical energy can be transformed into mechanical energy and vice versa.

Details	1. Law of	Skills
	Conservati	
	on of	
	Energy	
	2 The	
	relationshi	
	n between	
	potential	
	and kinetic	
	energy	
	3. The	
	difference	
	between	
	renewable	
	and	
	nonrenewa	
	ble energy	
	4. Use 5,	
	the	
	correct	
	formulas	
	to	
	calculate	
	current,	
	voltage,	
	Ohm's	
	Law.	
	5. Draw a	
	circuit	
	diagram	
	6.	
	Magnetic	
	fields	
	7.	
	Electromag	
	netism	
	8.	
	Electrical	

		transmissi on and generation 9. Significant figures	
Vocabulary	Energy- mechanical, thermal, chemical, electrical, electromagnetic, nuclear power Electromagnetic waves Electric field Electromagnetic spectrum Electric circuit Magnetic force Pole Field Electromagnetic Transformer Electric charge Electric field Electric field Electric field Electric field Electric aurent Conductor Insulator		

Benchmark #8: Society (Energy production, environment, economics)- Understand the impact of energy production and use on society and the environment.

A.) ICP.8.1 Describe how energy needs have changed throughout history and how energy needs are met in modern society.

B.) ICP.8.2 Describe the benefits and risks of the development of non-renewable forms of such as coal, oil, natural gas and uranium fission sources.

C.) ICP.8.3 Describe the benefits and risks of the development of renewable forms of energy such as solar energy, wind-energy, geothermal energy, fusion energy and biofuels.

D.) ICP.8.4 Describe how efficient use of renewable and non-renewable energy sources is essential to maintaining an acceptable environment.

E.) ICP.8.5 Describe how the availability of energy resources is essential to the development of an economically viable society.

F.) ICP.8.6 Contrast the dependence on and use of energy and other natural resources in the economies of industrial nations, of developing nations and of undeveloped nations.

G.) ICP.8.7 Describe the energy needs of a modern urban city, and compare and contrast these needs with those of a modern rural community.

Declarative Knowledg	e	Procedural	Procedural Knowledge	
Concepts	 Energy Usage and needs. Renewable vs. Nonrenewable energy Availability of energy resources 	Processes	Problem Solving Writing Process Scientific Research	
Organizing Ideas	 Students will understand society's need and usage of energy over time. Students will be able to compare and contrast renewable and nonrenewable energy sources, and be able to apply their knowledge to understand energy conservation. 			
	Details	Energy Usage and needs. Renewable vs. Nonrenewa ble energy Availability of energy resources	Skills	
Vocabulary	Energy			

Electricity		
Renewable		
Nonrenewable		
Efficiency		
Conservation		
Fossil fuels		

Essential Outcome #1

Properties of Matter: Macroscopic as a Model for Microscopic- Understand how the energies and motions of atoms and molecules at the microscopic level can be used to understand and predict the macroscopic properties of matter of gases, liquids and solids.

Summative Assessment:

Selected response - properties of substances, identify chemical and physical changes, recognize and describe phase changes and exothermic vs. endothermic changes, explain how electromagnetic forces determine physical state, identify solutions as homogeneous or heterogeneous mixtures.

Written response - Ratio of concentration can be expressed in a number of ways, demonstrate the law of conservation of mass.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline:			Analysis		
Target a, b, c:	Selected response	X	X		
Physical properties, chemical and physical changes,	Extended response				
Timeline: 2 weeks					
Target d, e:	Extended response		X	X	
Phase Changes					
Timeline: 1 weeks					
Target f:	Selected response	X	×	×	
Gas laws	Calculation problem				
Timeline: 1 week					

Integrated Chemistry/Physics Assessment Planning

Essential Outcome #2 :						
Chemical Energy, Reactions, and Bonding- Describe how energy is produced and absorbed in chemical reactions.						
Summative Assessment:						
Selected response - Identify and explain subatomic	particles, calculate numbe	er of protons, neutrons, e	electrons, rec	ognize isotopes		
Written response - How subatomic particles fit tog	ether in and atom, explain	arrangement of periodic	table, explai	n contributions	of Dalton,	
Thomson, Rutherford, and Bohr to atomic theory.						
Describe	Method	Testing	Testing	Testing	Testing	
Assessment &		Knowledge	Reasoning/	Performance	Product	
Timeline			Analysis			
Target a, b:						
Identify subatomic particles and how they fit						
together, calculate protons, neutrons, and						
electrons						
Timeline: 2 weeks						
Target c:						
Periodic table						
Timeline: 2 weeks						
Target d, e:						
The mole, write and balance equations						
Timeline: 3 weeks						
Target f:						
Types of chemical bonds						
Timeline: 2 weeks						
Target f-h:						
Types of chemical reactions, energy in reactions						
Timeline: 2 weeks						

Essential Outcome #3 : Nuclear Energy (fission/fusion)- Describe how the stability of nuclei in terms of the binding energies of their constituent protons and neutrons explains the energy production processes of fission and fusion.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline			Analysis		
Target a, b, c:					
The radioactive nucleus, nuclear decay					
Timeline: 2 weeks					
Target d, e, f, g, h:					
fission and fusion					
Timeline: 2 weeks					
			1		1

Essential Outcome #4 :

Motion and Energy of Macroscopic Objects- Describe and explain the motion of macroscopic objects in terms of Newton's laws and use the concepts of kinetic and potential energy to describe motion.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline:			Analysis		
Target a:					
Motion of objects- speed, velocity, acceleration					
Timeline: 2 weeks					
Target b-c:					
Newton's Laws					
Timeline: 2 weeks					
Target d:					
Energy- forms, conversion, conservation					
Timeline: 2 weeks					

Essential Outcome #5 :

Energy Transport / Heat- Describe how vibrations and waves transport energy.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline:			Analysis		
Target a-b:					
heat, temperature					
Timeline: 1 week					
Target c-d:					
thermodynamics					
Timeline: 1 week					

Essential Outcome #6 :

Mechanical Energy and Propagation of Energy by Waves- Explain that waves transmit energy, come in two forms, transverse and longitudinal, and occur throughout nature.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline:			Analysis		
Target a-b:	Selected response	X	X		
mechanical waves and their properties, examples of	Written response				
mechanical waves					
Timeline: 2 weeks					
Target c-d:					
Energy propagation of waves, behavior of waves					
Timeline: 1 week					
Target e-f:					
Electromagnetic Spectrum / Light					
Timeline 3 weeks					

Essential Outcome #7:

Electrical Energy Propagation and Magnetism- Describe how the movement and transfer of changed particles results in the transfer of electrical energy. Summative Assessment: Describe Method Testing Testing Testing Testing Assessment & Knowledge Reasoning/ Performance Product Timeline: Analysis Target a, b, c: Selected response Х Electric Charge Timeline: 1.5 weeks Target d, e: Electric Current, circuits Timeline: 1.5 weeks Target f, g: Magnetism Timeline: 2 weeks

Essential Outcome #8 :

Society (Energy production, environment, economics)- Understand the impact of energy production and use on society and the environment.

Describe	Method	Testing	Testing	Testing	Testing
Assessment &		Knowledge	Reasoning/	Performance	Product
Timeline:			Analysis		
Target A-G:	Selected response	X			
Natural resources, energy consumption, conservation,					
types of energy	Written Response				
Timeline: 1.5 weeks					